Изобретение относится к устройствам, предназначенным для демпфирования знакопеременных гидравлических ударов в протяженных трубопроводах, возникающих при авариях и стихийных бедствиях (при взрывах транспортируемых продуктов - от ударной волны взрыва; при землетрясениях - от гидроударов, возникающих при продольных перемещениях трубопровода с большими ускорениями).
Изобретение может быть использовано в нефтехимической отрасли в качестве устройства, обеспечивающего устойчивую работу насосных станций в чрезвычайных ситуациях (при взрывах продукта в магистральном трубопроводе или при продольных сейсмических воздействиях).
Известно устpойство для предотвращения распространения детонационной волны в газопроводе, содержащее огнепреградитель в виде коаксиально размещенных трубок.
Известно устройство для снятия пульсаций, содержащее цилиндрический корпус с внутренней мембраной, расположенной продольно. Газовая полость в нем примыкает к внешней поверхности корпуса, а со стороны защищаемого потока выполнены радиальные отверстия в камере амортизации. Известное устройство эффективно снимает пульсации и недостаточно эффективно снижает гидроудары протяженных трубопроводов, потоки в которых обладают большой инерцией вдоль трубопровода, а в нем защищаемый поток должен изменить направление движения на 90о.
Наиболее близким к заявленному устройству является гаситель гидравлических ударов, принятый за прототип и содержащий камеру амортизации с жесткой перфорированной перегородкой и демпфирующими сильфонами, заполненными сжатым газом. Он обеспечивает гашение гидроударов, возникающих в замкнутом объеме с тормозной жидкостью при движении в нем гидроцилиндра.
Однако этот гаситель имеет недостатки. Его использование для защиты магистрального трубопровода с текущей в нем жидкостью невозможно, поскольку отсутствует механизм поддержания рабочего перепада давления между газовой внутренней полостью сильфона и жидкостным внешним (защищаемым) потоком. Кроме того, в нем отсутствует обводной участок, обеспечивающий движение жидкости по трубопроводу. Кроме того, в нем не используется газ, параметры насыщения которого соответствуют рабочей температуре текущей жидкости и предельному допустимому давлению в трубопроводе и защищаемом объекте.
Целью изобретения является повышение устойчивости работы объектов магистрального трубопровода путем улучшения демпфирования гидроударов, возникающих в трубопроводе в чрезвычайных ситуациях.
Это достигается тем, что камера амортизации встроена в магистральный трубопровод на прямом участке таким образом, что один из сильфонов соединен с набегающим потоком, другой сильфон соединен с уходящим потоком жидкости, а объект встроен на обводном участке трубопровода, при этом присоединение обводного участка к магистральному трубопроводу выполнено под прямым углом выше и ниже камеры амортизации по поводу жидкости, кроме того, баллоны связаны посредством отверстия в жесткой перфорированной перегородке и шланга с газовой полостью регулятора давления. Жидкостная полость регулятора давления соединена с помощью шланга с трубкой Пито, установленной в магистральном трубопроводе, одновременно регулятор давления установлен ниже магистрального трубопровода на высоту, обеспечивающую рабочий перепад давлений для баллона (что обеспечивает ему расчетное растяжение при изменениях давления перекачиваемой жидкости). В баллоны помещен газ, имеющий состояние насыщения при температуре перекачиваемой жидкости и давлении, равном или меньшем предельно допустимого давления в трубопроводе и объекте.
Сущностью изобретения является использование газа с определенными свойствами по параметрам насыщения, обеспечение новой взаимосвязи элементов, создающих автоматически регулируемые параметры (перепад давления для работы баллонов, установка устройства в рассечку на прямом участке трубопровода и устройство обвода с установкой на нем защищаемого объекта - насосной станции). Благодаря отмеченным признакам достигается новый эффект - гасятся гидроудары в текущей жидкости (при чрезвычайной ситуации).
В том случае, когда температура перекачиваемой жидкости равна 23оС, а значением давления является давление в 60 кг/см3, в качестве рабочего газа баллонов может быть рекомендован углекислый газ, имеющий при 23оС давление насыщения, равное 60 кг/см2.
В предлагаемой конструкции баллоны расположены по ходу потока, размеры баллонов автоматически сохраняются в оптимальных значениях (благодаря регулятору перепада давления), а использование СО2обеспечивает при высоких давлениях резкое уменьшение размеров баллонов (вследствие изменения агрегатного состояния - перехода из газообразного состояния в жидкость: при 23оС - 60 кг/см2, при 0оС - 34 кг/см2). Указанные свойства обеспечивают эффективное гашение гидроударов в текущей жидкости.
На фиг. 1 изображено предлагаемое устройство.
В магистральный трубопровод 1.1 и 1.2 встроено устройство, под прямым углом к нему присоединен обводной трубопровод 2.1 и 2.2. На обводном трубопроводе 2.1 и 2.2 установлена защищаемая насосная станция 3. Камера амортизации имеет корпус 5 по форме трубы, она разделена жесткой перфорированной перегородкой на два симметричных отсека. С каждой стороны к перегородке присоединены гибкие баллоны 4.1 и 4.2 для сжатого газа. Корпус 5 камеры амортизации выполнен съемным на фланцах 7.1 и 7.2. Внутренние полости баллонов 4.1 и 4.2 соединены посредством отверстия 8, сверления в перегородке и шланга 9 с газовой полостью 10 регулятора давления. Жидкостная полость 11 регулятора давления соединена с помощью шланга 14 и трубки Пито 15 с набегающим потоком жидкости трубопровода 1.1.
Во фланцевых соединениях 7.1 и 7.2 установлены защитные сетки 16, предохраняющие баллоны от предельно допустимых растяжений.
На фиг. 2 изображен другой вариант регулятора давления, отличающийся тем, что жидкостная полость 11 установлена над газовой полостью 10, а к мягкой герметичной мембране 12 прикреплен груз 17, обеспечивающий дополнительное давление в газовой полости. Кронштейн 18 прикрепляется на требуемой высоте винтами 19 к направляющей 20.
Работает устройство следующим образом.
При сейсмическом воздействии справа-налево трубопровод 1.1 и 1.2 перемещается влево с ускорением а в течение времени τ на расстояние Δ . Вследствие инерции столб жидкости h стремится сохранить свою скорость и положение в пространстве. Пренебрегая силами трения, можно определить величину перемещения жидкости относительно трубопровода. В этом случае жидкость займет часть объема баллона 4.1. Давление газа в нем повысится на величину от Р1 до Р2. Одновременно баллон 4.2 растянется, поскольку столб жидкости останется на месте, а труба переместится влево на Δ . При этом начнется переток газа (дросселирование) через отверстие 8 из баллона 4.1 в баллон 4.2 и частично в газовую полость 10 регулятора давления. Поскольку импульсная трубка 15 имеет малое сечение, то быстрого увеличения давления в полостях 10, 11 регулятора давления не произойдет.
Если продольные длины l баллонов превышают значения Δ = , то произойдет некоторое повышение давления текущей жидкости до значения Р2, которое ориентировочно можно определить по формуле
P2=P (без учета перехода СО2 в жидкость).
Для того, чтобы обратная волна давления не передавалась через обводной трубопровод 2.1 и 2.2. вдоль по трубопроводу, его присоединение к магистральному выполнено на расстоянии от камеры амортизации не менее пяти диаметров трубопровода. Камера амортизации позволяет перевести энергию удара в колебательные движения жидкости, размещенной в магистральном трубопроводе между двумя соседними насосными станциями, оборудованными заявленными гасителями. Колебательные движения будут быстро затухать, т.к. энергия будет расходоваться на дросселирование газа при перетекании его из одного баллона в другой.
Контроль герметичности и заправки системы газом осуществляется через штуцер 13, который может быть выполнен, например, в виде ниппельного соединения.
Устройство позволяет полностью сохранить профиль магистрального трубопровода и получить положительный эффект, заключающийся в повышении устойчивости функционирования магистрального трубопровода в чрезвычайных ситуациях.
название | год | авторы | номер документа |
---|---|---|---|
УСТРОЙСТВО ДЛЯ УЛАВЛИВАНИЯ ПАРОВ УГЛЕВОДОРОДНЫХ И ТЕХНИЧЕСКИХ ЖИДКОСТЕЙ В ХРАНИЛИЩЕ | 2010 |
|
RU2475435C2 |
КЛАПАН ЗАПОРНО-РЕГУЛИРУЮЩИЙ | 2007 |
|
RU2374542C2 |
ГАЗОНАПОЛНИТЕЛЬНАЯ СТАНЦИЯ НАУМЕЙКО | 2004 |
|
RU2244205C1 |
ГРУППОВОЙ ЗАПРАВЩИК ТОПЛИВОМ САМОЛЕТОВ | 1997 |
|
RU2118601C1 |
СТЕНД ДЛЯ ИССЛЕДОВАНИЯ ТЕЧЕНИЯ ЖИДКОСТИ В ТРУБОПРОВОДЕ | 2018 |
|
RU2678712C1 |
ГАСИТЕЛЬ ПУЛЬСАЦИЙ | 2004 |
|
RU2277198C1 |
СТАБИЛИЗАТОР ДАВЛЕНИЯ | 1998 |
|
RU2145027C1 |
Гаситель гидравлических ударов | 1983 |
|
SU1168768A1 |
Гаситель гидравлических ударов | 1981 |
|
SU964325A1 |
Автоматическое устройство для гашения гидравлических ударов | 1982 |
|
SU1067286A1 |
Использование: гаситель предназначен для гашения гидроударов, возникающих при авариях со взрывом и при землетрясениях от сейсмического воздействия. Сущность изобретения: устройство состоит из камеры амортизации, встроенной в трубопровод и разделенный поперечной жесткой перфорированной перегородкой, к которой прикреплены с двух сторон сильфоны, заполненные сжатым газом и соединенные с помощью шланга с регулятором перепада давления внутри и снаружи сильфонов. В сильфонах используется газ, имеющий состояние насыщения при температуре перекачиваемой жидкости и давлении, равном предельному давлению, на которое рассчитаны элементы магистрального продуктопровода. 1 з.п. ф-лы, 2 ил.
Гаситель гидравлических ударов | 1981 |
|
SU964325A1 |
Устройство для электрической сигнализации | 1918 |
|
SU16A1 |
Авторы
Даты
1994-10-30—Публикация
1990-09-25—Подача