УСТРОЙСТВО ДЛЯ ФОКУСИРОВКИ МОНОХРОМАТИЧЕСКОГО ИЗЛУЧЕНИЯ Российский патент 1994 года по МПК G02B27/44 

Описание патента на изобретение RU2024897C1

Изобретение относится к оптическому приборостроению и может быть использовано в различных сферах промышленности, например, в металлургической, машиностроительной и текстильной для лазерной маркировки изделий, закалки поверхностей, раскроя тканей.

Известно устройство для маркировки изделий, содержащее оптический элемент, фокусирующий монохроматическое излучение в набор точек.

Недостатком известного устройства являются значительные энергетические потери, обусловленные дифракционными эффектами (дифракционное размытие фокального пятна, рассеяние излучения на разрезах фазовой функции между сегментами, фокусирующими в разные точки).

Наиболее близким по технической сути к предлагаемому устройству является устройство для фокусировки монохроматического излучения в набор отрезков, выполненное в виде фазового оптического элемента. Апертура оптического элемента состоит из сектора круга, каждый сектор обеспечивает фокусировку в соответствующий отрезок фокальной области.

Недостатком известного устройства является энергетические потери, обусловленные дифракционным размытием фокальной линии и рассеянием излучения на разрезах фазовой функции между сегментами, фокусирующими в различные отрезки, а также более высокое среднеквадратичное отклонение распределения интенсивности вдоль отрезков фокусировки, обусловленное интерференцией фокусируемого и рассеянного излучений.

Решаемая задача состоит в достижении наиболее полной концентрации энергии при фокусировке монохроматического излучения в область, состоящую из N фигур одинаковой формы и пропорциональных размеров с заданным соотношением энергии между фигурами.

Требуемый процесс фокусировки реализуется фазовым оптическим элементом, рельеф поверхности которого описывается выражением
(1) где h(u,v) - высота рельефа в точке (u,v) фазового оптического элемента;
(u, v) - декартовы координаты точки элемента в системе координат, лежащей в плоскости элемента с осью Ои, направленной противоположно проекции падающего луча;
λ - длина волны излучения,
ν(θ, n) = для оптического элемента, работающего на пропускание излучения, и ν(θ,n) = - для оптического элемента, работающего на отражение, где θ - угол между фокусируемым излучением и нормально к плоскости оптического элемента;
n - показатель преломления вещества элемента;
mod(x) - функция, равная остатку от деления х на 2π ;
f - фокусное расстояние элемента;
Φ (ζ) - функция фазовой модуляции фазовой дифракционной решетки с периодом Т = 2 π и интенсивностью дифракционных порядков а12,...,аN2;
(xo, yo) - вектор смещения между геометрическими центрами фокусируемых фигур;
ϕ (u, v) - фазовая функция фокусатора в одну фигуру.

В частности, для увеличения степени концентрации энергии при фокусировке в четыре фигуры пропорциональных размеров в формуле (1) для высоты микрорельефа достаточно определить функцию Φ (ζ) как фазовую модуляцию четырехпорядковой решетки с периодом Т = 2 π и равной интенсивностью в порядках с номерами -2, -1, 1, 2:
Φ(ζ) = (2)
Рассмотрим работу оптического элемента, рельеф поверхности которого описывается формулой (1). Высота микрорельефа h(u,v) связана с фазовой функцией элемента следующим соотношением:
F(u,v) = h(u,v) (3)
Без ограничения общности рассмотрим случай нормального падения излучения на оптический элемент ( θ = 0). При этом согласно (1), (3) фазовая функция элемента имеет вид
F() = mod+ Φ (()) где =(u,v), k=
()= mod(ϕ()+
ϕ() - фазовая функция, рассматриваемая как дополнение к линзе с фокусом f и обеспечивающая фокусировку в одну фигуру.

Рассмотрим функцию Φ[()] как функцию аргумента . При этом Φ[] соответствует фазовой модуляции N-порядковой дифракционной решетки с периодом 2π и интенсивностью дифракционных порядков
a21

, . .., a2N
a2i
=1. Обозначим l1,...,lN - номера порядков дифракции. Тогда разложение Фурье функции exp[iΦ()] на интервале [0,2π ) с учетом ненулевых членов l1,...,lN имеет вид:
exp[iΦ()]= Cexp[iln()], (4) где Cln - коэффициенты Фурье, причем Cln = an2.

Полагая в (4) = (u,v) и используя 2π -периодичность фазы запишем функцию комплексного пропускания оптического элемента в виде:
exp(iF())= exp- Cexp(il()) (5)
Согласно (5) каждая зона, определяемая как область изменения функции () в пределах интервала [0,2 π), формирует N пучков (каждый пучок характеризуется фазовой функцией ϕп()= lпϕ(). В силу линейности оператора распространения света поле в фокальной области есть суперпозиция преобразований освещающего пучка, осуществляемых фазовыми функциями
ϕп() = - + lпϕ()+ lп В приближении геометрической оптики фазовая функция - + ϕ() , обеспечивающая фокусировку в одну фигуру, выполняет преобразование светового поля, при котором каждой точке (u,v) в области расположения оптического элемента соответствует точка (u,v)= (x(u, v),y(u,v))в фокальной плоскости, причем указанное преобразование имеет вид
(u,v)= grad [ϕ(u,v)] (7) Согласно (7), фазовая функция
=V-+ осуществляет преобразование:
(u, v)= l+ lпgrad [ϕ(u,v)] (8) что соответствует фокусировке в ln раз увеличенную фигуру, смещенную на вектор = (lпxo, lпyo). Таким образом, фазовая функция оптического элемента обеспечивает фокусировку излучения в набор N фигур пропорциональных размеров, причем доля энергии освещающего пучка, фокусируемая в фигуру с номером n, пропорциональна квадрату модуля an2 соответствующего коэффициента Фурье.

Оптический элемент соответствует дифракционному решению задачи фокусировки в N фигур пропорциональных размеров. При этом полная апертура элемента (1) работает в каждую из N фигур фокусировки, что снижает степень дифракционного размытия по сравнению с сегментированными оптическими элементами [1], [2] и обеспечивает наиболее полную концентрацию энергии в области фокусировки.

На чертеже приведена схема устройства, реализующего предлагаемый способ для случая фокусировки лазерного излучения в набор из N фигур одинаковой формы и пропорциональных размеров с соотношением энергии а12,...,аN2 между фигурами.

Устройство состоит из оптического элемента 1, выполненного в виде отражающей пластинки с микрорельефом 2. Форма поверхности микрорельефа 2 определяется выражением (1). (В частности, при фокусировке в 4-е фигуры с равными энергиями Φ (ζ) описывается формулой (2)). На оптический элемент 1 направлено лазерное излучение 3, которое фокусируется в область 4, состоящую из N фигур пропорциональных размеров.

Устройство работает следующим образом. Лазерное излучение 3 падает на отражающий оптический элемент 1 с микрорельефом 2, угол между нормалью к плоскости оптического элемента и падающим лучом равен θ. За счет отражения излучения 3 от поверхности микрорельефа 2 происходит фазовая модуляция волны 3 по закону, описываемому кусочно-непрерывной функцией, изменяющейся в диапазоне от 0 до (для отражающего оптического элемента).

Таким образом формируется N волновых пучков с заданным соотношением энергии а12, . ..,аN2 между пучками, при этом микрорельеф 2 направляет падающий на него волновой фронт во все N фигур фокусировки. За счет взаимодействия волновых фронтов, направляемых микрорельефом оптического элемента 1, в области фокусировки 4 излучение фокусируется в N фигур одинаковой формы и пропорциональных размеров с соотношением энергии a12,...,aN2 между фигурами.

Похожие патенты RU2024897C1

название год авторы номер документа
ОПТИЧЕСКОЕ УСТРОЙСТВО С ПАРОЙ ДИФРАКЦИОННЫХ ОПТИЧЕСКИХ ЭЛЕМЕНТОВ 2007
  • Бернет Штефан
  • Рич-Марте Моника
RU2458367C2
УСТРОЙСТВО ДЛЯ ТЕРМОЗАКАЛКИ РЕЖУЩЕЙ КРОМКИ РЕЗЦА 2007
  • Сойфер Виктор Александрович
  • Казанский Николай Львович
  • Абульханов Станислав Рафаелевич
  • Досколович Леонид Леонидович
  • Харитонов Сергей Иванович
RU2341568C2
МУЛЬТИФОКАЛЬНАЯ ИНТРАОКУЛЯРНАЯ ЛИНЗА И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ 2005
  • Ленкова Галина Александровна
  • Коронкевич Вольдемар Петрович
  • Корольков Виктор Павлович
  • Искаков Игорь Алексеевич
RU2303961C1
УСТРОЙСТВО ДЛЯ ИЗГОТОВЛЕНИЯ ОПТИЧЕСКИХ КОРРЕГИРУЮЩИХ ЭЛЕМЕНТОВ 1992
  • Голуб М.А.
  • Сойфер В.А.
  • Сисакян И.Н.
  • Терехин Ю.Д.
RU2047205C1
Устройство для фокусировки оптического излучения в отрезок прямой (его варианты) 1984
  • Гончарский Александр Владимирович
  • Данилов Виктор Анатольевич
  • Попов Владимир Викторович
  • Сисакян Иосиф Норайрович
  • Сойфер Виктор Александрович
  • Степанов Владимир Вадимович
SU1303960A1
СПОСОБ ИЗМЕРЕНИЯ РАЗМЕРОВ СРЕДНЕГО ДИАМЕТРА ОБЪЕКТОВ В ГРУППЕ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1992
  • Мелик-Саркисян В.П.
  • Буряченко В.Ф.
  • Пресняков Ю.П.
RU2044265C1
Устройство для фокусировки оптического излучения в прямоугольник с равномерным распределением интенсивности (его варианты) 1984
  • Гончарский Александр Владимирович
  • Данилов Виктор Анатольевич
  • Попов Владимир Викторович
  • Сисакян Иосиф Норайрович
  • Сойфер Виктор Александрович
  • Степанов Владимир Вадимович
SU1314291A1
Устройство для фокусировки оптического излучения в кривую линию (его варианты) 1984
  • Гончарский Александр Владимирович
  • Данилов Виктор Анатольевич
  • Попов Владимир Викторович
  • Сисакян Иосиф Норайрович
  • Сойфер Виктор Александрович
  • Степанов Владимир Вадимович
SU1303961A1
ЭТАЛОННЫЙ ДИФРАКЦИОННЫЙ ОПТИЧЕСКИЙ ЭЛЕМЕНТ (ВАРИАНТЫ) 2013
  • Полещук Александр Григорьевич
RU2534435C1
УСТРОЙСТВО ДЛЯ РАСПОЗНАВАНИЯ ОПТИЧЕСКИХ ДИФРАКЦИОННЫХ МЕТОК 1998
  • Штауб Рене
  • Томпкин Вэйн Роберт
RU2208248C2

Иллюстрации к изобретению RU 2 024 897 C1

Реферат патента 1994 года УСТРОЙСТВО ДЛЯ ФОКУСИРОВКИ МОНОХРОМАТИЧЕСКОГО ИЗЛУЧЕНИЯ

Использование: оптическое приборостроение. Сущность изобретения: устройство выполнено в виде оптического элемента, рельеф которого определяется по приведенной в описании формуле. 1 з.п.ф-лы, 1 ил.

Формула изобретения RU 2 024 897 C1

1. УСТРОЙСТВО ДЛЯ ФОКУСИРОВКИ МОНОХРОМАТИЧЕСКОГО ИЗЛУЧЕНИЯ, выполненное в виде фазового оптического элемента, отличающееся тем, что, с целью увеличения степени концентрации энергии при фокусировке в область, состоящую из фигур одинаковой формы и пропорциональных размеров с заданным соотношением энергии a12, . . .aN2 между фигурами, рельеф фазового оптического элемента описывается выражением
(
где h(u, v) - высота рельефа в точке (u,v) фазового оптического элемента;
(u, v) - декартовы координаты точки элемента в системе координат, лежащей в плоскости элемента с осью Θu ,, направленной противоположно проекции падающего луча;
λ - длина волны излучения;
ν(θ, n) = для оптического элемента, работающего на пропускание излучения, и
ν(θ,n) = - работающего на отражение,
где Θ - угол между фокусируемым излучением и нормалью к плоскости оптического элемента;
n - показатель преломления вещества элемента;
mod[x] - функция, равная остатку от деления x на 2π;
f - фокусное расстояние элемента;
Θ(ζ) - периодическая функция с периодом T=2π, описывающая модуляцию фазовой дифракционной решетки с интенсивностью дифракционных порядков, a12... ,aN2 ;
(x0, y0) - вектор смещения между геометрическими центрами фокусируемых фигур;
ϕ(u,v) -фазовая функция фокусатора в одну фигуру.
2. Устройство по п.1, отличающееся тем, что, с целью увеличения степени концентрации энергии при фокусировке в область, состоящую из четырех фигур пропорциональных размеров с равными энергиями, периодическая функция с периодом T = 2n, описывающая модуляцию фазовой дифракционной решетки с равной интенсивностью дифракционных порядков a12, a22, a32, a42 , определяется как
Φ(ζ) =

Документы, цитированные в отчете о поиске Патент 1994 года RU2024897C1

СПОСОБ УВЕЛИЧЕНИЯ АЛЬВЕОЛЯРНОГО ОТРОСТКА ПРИ ДЕФЕКТАХ ЗУБНОГО РЯДА 2001
  • Абдуллаев Ф.М.
  • Кулаков А.А.
RU2185126C1
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1

RU 2 024 897 C1

Авторы

Голуб М.А.

Досколович Л.Л.

Казанский Н.Л.

Сисакян И.Н.

Сойфер В.А.

Харитонов С.И.

Даты

1994-12-15Публикация

1991-04-17Подача