Изобретение относится к прикладной геофизике и может быть использовано в сухопутной сейсморазведке.
В настоящее время способы сейсмической разведки характеризуются низкой эффективностью при получении информации о геологическом строении изучаемого среза.
Наиболее близким решением по своей технической сущности является приемная система для сейсмической разведки, состоящая из сейсмоприемников, каждый из которых содержит три датчика, располо- женных под углом 45о к горизонтальной плоскости. При обработке зарегистрированных сейсмических сигналов из суммарного волнового поля в результате многократного последовательного применения операций направленного суммирования и вычитания к записям всех трех проекций вычисляют регулярную и нерегулярную составляющие исходного поля в их реальном виде.
Недостатками известного технического решения является низкая эффективность при получении информации о геологическом строении изучаемого разреза в результате того, что полученные поля не являются монотипизированными.
В основу изобретения положена задача повышения геологической эффективности сейсморазведочных исследований на суше на основе одновременного изучения геологического разреза совокупностью продольных и поперечных упругих волн с соблюдением оптимальных условий для комплексной интерпретации.
Поставленная задача решается тем, что одновременно возбуждают упругие волны Р- и S-типа. Регистрацию проводят сейсмоприемниками, каждый из которых содержит четыре датчика, расположенные под углом 45о к горизонтальной плоскости и равномерно распределенные по азимуту. Далее при обработке полученных записей по известным соотношениям рассчитывают прямоугольные декартовы координаты полного вектора волнового поля в каждой точке приема. Путем сравнения модулей четырех проекций, зарегистрированных в каждой точке приема с модулем полного вектора в данной точке приема выделяют три монотипные линейно-поляризованные волны РР-, SV-, SH-типа и нелинейно-поляризованную волну, которые используют в качестве полезного сигнала.
Сущность изобретения заключается в следующем.
В точке приема может наблюдаться совокупность следующих геологических значимых отраженных волн: трех монотипных - РР, SV и SH- и двух обменных - SvP и PSv. Использование сейсмоприемников, каждый из которых состоит из четырех датчиков, наклонных к горизонту под углом 45о и равномерно распределенных по азимутальному кругу, т.е. через 90о, позволяет на стадии приема обеспечить не искаженную никакими входными преобразованиями регистрацию наблюдаемых волновых полей в их естественном динамическом диапазоне. Известно, что такая симметричная тетрапроекционная установка обладает абсолютной инвариантностью своей реакции на вертикальные и горизонтальные смещения точки приема. При этом ориентация датчиков относительно линии пpофиля наблюдений под углом 45о обеспечивает максимально возможную точность расчета декартовых проекций полного вектора волнового движения.
Полученные датчиками проекции I, II, III, IV можно разложить на следующие однотипные на приеме физические компоненты:
1) Поле волн, регистрируемых как продольные линейной поляризации, т.е. преломленные (рефрагированные) Р, отражен- ные РР и обменные отраженные SvP.
2) Поле волн, регистрируемых как поперечные вертикальной линейной поляризации, т. е. преломленные (рефрагированные), отраженные Sv и обменные отраженные PSv.
3) Поле волн, регистрируемых как поперечные горизонтальной линейной поляризации, т.е. преломленные (рефрагирован- ные), отраженные Sн.
4) Поле нелинейно-поляризованных волн, представленное в основном поверхностными волнами Рэлея и Лява.
Процедура разделения наблюдаемого сложного сейсмического поля на однотипные на приеме физические компоненты начинается с расчета прямоугольных декартовых координат вектора волнового движения в точке приема посредством следующей системы алгебраических формул:
X = 0,50000 (I-II-III+IV)
Y = 0,50000 (I+II-III-IV)
Z = 0,35355 (I+II+III+IV)
Полученные традиционные проекции являются синхронными и спектрально идентичными. Проекции X, Y, Z уже в значительной степени монотипизированы, т. е. в них намечается соответствие определенным типам линейно поляризованных волн. Однако они содержат другие проекции, поэтому на следующем этапе применения процедуры разделения производится очищение каждой из проекций X, Y, Z от нехарактерных для нее типов волновых полей. Практически это сводится к расчету трех сейсмограмм преобладающих проекций, которые можно уже смело отождествлять с определенными волновыми полями, причем тем точнее, чем строже принятый критерий преобладания.
Сейсмограммы преобладающих проекций Хпр, Yпр, Zпр находят путем последовательного сравнения модулей декартовых проекций с модулем полного вектора и отбора тех из них, которые не меньше 0,95 последнего. Достигнутая степень монотипизации - 95% - достаточно высока для целей практической сейсморазведки, но в полученных преобладающих проекциях содержатся отдельные отсчеты, принадлежащие нелинейно-поляризованной компо- ненте.
Чтобы избавиться от них и таким образом получить чистые монотипизированные волновые поля определяют проекции преобладающих проекций на направления датчиков 1, 2, 3, 4. Затем из зарегистриро- ванных проекций I, II, III и IV вычитают последовательно проекции на эти направления сейсмограмм преобладающих проекций Хпр и Yпр, а также сейсмограмму нелинейно-поляризованных волн. По полученным разностным проекциям рассчитывают декартовую координату Z, которая соответствует полю продольных упругих волн Р. Аналогичным образом, после вычитания из зарегистрированных проекций соответствующих проекций Yпр и Zпр по полученным разностям определяют декартовую координату Х, которая соответствует полю поперечных упругих волн вертикальной поляризации S. И, наконец, после вычитания из зарегистрированных проекций нелинейно-поляризованной составляющей и соответствующих проекций Zпр и Хпр находят декартовую координату Y, которая соответствует полю поперечных упругих волн горизонтальной поляризации SH. На этом процедуру разделения зарегистрированного сложного сейсмического поля на монотипные физические слагаемые заканчивают.
Как следует из приведенного выше описания, приемный элемент заявляемого способа - сейсмоприемник, включающий четыре датчика, обладает по меньшей мере двумя новыми свойствами, нереализуемыми ни одним из известных аналогов, а именно, совершенно одинаковой реакцией на разнотипные волновые движения и возможностью метрологического контроля за амплитудной идентичностью датчиков, образующих сейсмоприемник.
Кроме отмеченных выше достоинств указанных сейсмоприемников у них существует еще одно очень важное свойство - наличие четвертого датчика позволяет осуществлять поотсчетный метрологический контроль за амплитудной идентичностью датчиков тетрасейсмоприемника путем сравнения модулей четырех частичных векторов, рассчитываемых по тройкам.
Разделение наблюдаемых в реальности волновых полей на элементарные (монотипные) физические составляющие, обладающие преимущественно линейной поляризацией, и совокупную нелинейно-поляризованную компоненту отличает заявленный способ от известных на сегодня способов сейсморазведки. Его преимущества обусловлены тем, что при наличии в каждой из точек приема не менее трех сейсмотрасс-проекций решение задачи разделения наблюдаемого волнового поля сводится к итеративному применению процедуры вычитания волновых полей, которая гораздо менее трудоемка, чем процедуры типа регулируемого направленного приема, по необходимости применяемые с теми же целями в тех случаях, когда в точках приема регистрируются одиночные сейсмотрассы-проекции. Как известно, максимальная эффективность применения процедуры вычитания во временной области обеспечивается лишь в том случае, когда слагающие разделяемого поля элементарные волны синхронны между собой, а при приеме они претерпевают одинаковые спектральные изменения.
В заявленном способе оба упомянутых условия соблюдаются. Соблюдение первого условия - синхронности - обеспечивается применением импульсных источников, одновременно излучающих наиболее информативные в геологическом отношении упругие волны, т.е. продольные и поперечные горизонтальной поляризации. Соблюдение второго - идентичности амплитудно-частотных характеристик приемных трактов - обеспечивается применением сейсмоприемников, каждый из которых состоит из четырех одинаковых датчиков, наклоненных к горизонту под углом 45о и равномерно распределенных по азимуту.
На фиг.1 представлены три ортогональные декартовые проекции полного волнового поля, а на фиг.2 - соответствующие им сейсмограммы преобладающих проекций; на фиг.3, 4 и 5 приведены результаты первых двух шагов процедуры разделения полей (или монотипизации) для каждой из декартовых проекций.
На эти сейсмограммы выносились только те проекции, которые превышали по модулю сумму двух остальных (в этом случае степень поляризации по данному направлению составляет не менее 90%). Поэтому эти сейсмограммы и обозначены соответствующими типами упругих волн.
Очевидное различие между сейсмограммами на фиг.1 и 2 свидетельствует как о работоспособности предложенной процедуры разделения полей, так и наличии в традиционных сейсмограммах чужеродных проекций. Последний факт говорит о том, что ставить знак равенства, например, между реакцией вертикального сейсмоприемника и продольными волнами, как это делается до настоящего времени по меньшей мере не обосновано. Пренебрежение этим фактом может приводить к ошибкам, особенно в результатах энергетических преобразований сейсмических трасс типа псевдоакустического каротажа.
Из фиг.3, 4 и 5 следует, что поскольку характер монотипизированных сейсмограмм определяется, в основном, степенью сложности и особенностями геологического строения земных недр, монотипизированные сейсмограммы являются превосходным материалом для геолого-геофизической интерпретации и изучения вещественного состава геологического разреза.
При промышленном использовании способа при выборе параметров схемы наблюдений необходимо учитывать очевидную универсальность заявляемой системы в отношении используемых типов упругих волн.
Синхронное излучение двух наиболее геологически информативных упругих волн Р и SН осуществляют путем вертикально-горизонтального удара по плите с шипами на стороне, соприкасающейся с грунтом. Для обеспечения приемлемой мощности излучаемых упругих волн Р- и S-типа и достаточно высокого отношения сигнал/помеха целесообразно использовать групповые источники, состоящие из 4-5 элементов с обязательным накапливанием воздействий.
Расстояние между точками приема уменьшают в 2 раза по сравнению с рассчитанными на использование только продольных волн. При этом необходимо несколько повысить кратность перекрытия по профилям МОГТ, т.к. прием желательно осуществлять одиночными тетрасейсмоприем- никами.
Принципиальная работоспособность предложенного способа сейсморазведки была проведена в сейсмологических условиях центральной части Прикаспийской впадины, где в интервале глубин 0,7-5,5 км залегает каменная соль с прослоями терригенных отложений, а отражения продольных волн от подсолевых горизонтов регистрируются в интервале 3,1-4,1 с.
В качестве источника упругих колебаний использовались генераторы сесмических колебаний типа ГСК-6 (импульсное воздействие на грунт типа вертикальной силы). Прием осуществлялся с помощью самодельных трехпроекционных симметричных установок с наклоном датчиков под углом 45о. Расстояние между точками приема равнялось 50 м, каждое физическое наблюдение состояло из 64 трасс. Диапазон удалений точек приема от источника составил 0,1-3,3, 25 км, длительность записи - 5 см.
название | год | авторы | номер документа |
---|---|---|---|
Приемная система для сейсмической разведки | 1978 |
|
SU767677A1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ПРЕДВЕСТНИКА ЦУНАМИ | 2005 |
|
RU2292569C1 |
СПОСОБ ВЕРТИКАЛЬНОГО СЕЙСМИЧЕСКОГО ПРОФИЛИРОВАНИЯ | 1973 |
|
SU408249A1 |
Способ сейсмической разведки | 1989 |
|
SU1689900A1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ОРИЕНТАЦИИ СЕЙСМОПРИЕМНИКОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2002 |
|
RU2209449C1 |
СПОСОБ СКВАЖИННОЙ СЕЙСМОРАЗВЕДКИ | 2001 |
|
RU2199767C1 |
СПОСОБ СЕЛЕКЦИИ ЛИНЕЙНО ПОЛЯРИЗОВАННЫХ СЕЙСМИЧЕСКИХ ВОЛН | 2010 |
|
RU2436126C2 |
СПОСОБ ФАЗОВЕКТОРНОГО АНАЛИЗА СЕЙСМИЧЕСКИХ ВОЛН | 2007 |
|
RU2351955C2 |
Сейсмический способ выявления вертикальных и крутонаклонных пластов путём реверсивного просвечивания на продольных рефрагированных волнах | 2023 |
|
RU2806537C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ПРЕДВЕСТНИКА ЦУНАМИ | 2011 |
|
RU2455664C1 |
Использование: геофизическая разведка, в частности сейсморазведка при изучении геологической среды. Сущность: способ обеспечивает синхронное излучение в геологическую среду продольных Р и поперечных горизонтальной поляризации SH волн и неискажающую регистрацию отклика среды с поможью симметричных четырехпроекционных сесмоприемников, датчики которых равномерно распределены по азимуту и наклонены к горизонту под углом 46°. Произведенные таким образом излучение и прием сейсмических волн создают благоприятные условия для использования процедуры вычитания волновых полей с целью разделения наблюдаемого суперпозиционного волнового поля на три линейно-поляризованные /волны P, SV и Sh/ и суммарную нелинейно-поляризованную физические компаненты. В результате появляется возможность для изучения геологического разреза как отдельными сейсмическими волнами различного типа, так и их совокупностью в целом. 5 ил.
СПОСОБ СЕЙСМИЧЕСКОЙ РАЗВЕДКИ, включающий возбуждение упругих колебаний, их регистрацию сейсмоприемниками, каждый из которых содержит три датчика, расположенные под углом 45o к горизонтальной плоскости, и обработку полученных записей с выделением полезного сигнала, отличающийся тем, что одновременно возбуждают упругие волны P- и S-типа, регистрацию проводят сейсмоприемниками, каждый из которых дополнительно содержит четвертый датчик, при этом все датчики равномерно распределены по азимуту, при обработке полученных записей рассчитывают прямоугольные декартовы координаты полного вектора волнового поля в каждой точке приема путем сравнения модулей декартовых проекций, рассчитанных в каждой точке приема с модулем полного вектора в данной точке приема, выделяют три монотипные линейно-поляризованные волны PP-, SV-, SH- типа и нелинейно-поляризованную волну, которые используют в качестве полезного сигнала.
Приемная система для сейсмической разведки | 1978 |
|
SU767677A1 |
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Авторы
Даты
1995-03-10—Публикация
1993-01-05—Подача