СПОСОБ ПОЛУЧЕНИЯ КИСЛОРОДА И ВОДОРОДА Российский патент 1995 года по МПК C25B1/02 

Описание патента на изобретение RU2032769C1

Изобретение относится к электрохимическому производству, в частности к электролизу.

Наиболее близким изобретением является способ магнитодинамического автоэлектролиза, выбранный в качестве прототипа.

На электрохимическую систему, содержащую электроды и электролит, воздействуют внешним магнитным полем, ортогональным контурам электродов. Причем осуществляют вращение источников магнитного поля в плоскостях, параллельных контурам электродов. Благодаря этому осуществляют относительно движение ионов диссоциированного электролита в магнитном поле, перпендикулярном направлению движения. На заряды (разнополярные ионы), движущиеся относительно магнитного поля действует сила, которая направлена перпендикулярно к плоскости векторов магнитной индукции и скорости относительного движения. При относительном движении по окружности направление силы Лоренца, как и направление перемещения ионов (ионного тока), ортогонально вектору линейной скорости относительного движения и происходит в соответствии со знаком заряда в направлении радиуса-вектора к противоположным контурным электродам. В результате этого происходит поляризация электродов, причем разность потенциалов между ними при достаточных значениях линейной скорости и магнитной индукции достигает напряжения разложения электролита, что приводит к протеканию электрического тока в электрохимической системе к электролизу. Сущность электролиза, происходящего на электродах в описанном способе, не отличается от традиционного электролиза, когда электроды подключены к внешнему источнику напряжения.

В способе для повышения эффективности процесса отражены различные возможности относительного перемещения электролита в магнитном поле, в том числе и в совокупности с прокачиванием. Он предназначен для разложения воды, с целью получения экологически чистого топлива водорода. Данным способом можно разложить электролит, не прибегая к окольному пути получения постоянного напряжения для электролиза, связанному со значительными потерями при преобразовании механического движения в электроэнергию с помощью электрогенератора. Благодаря этому не только повышается эффективность электрохимического производства, но и снижаются затраты на оборудование.

Несмотря на то, что экономически выгоднее проводить электролиз описанным способом в сравнении с обычным электролизом, ему присущи определенные недостатки. Они связаны с необходимостью либо прокачивания электролита, либо вращения системы постоянных магнитов, ввиду того, что данный способ является динамическим. Это ведет к усложнению способа при его реализации вследствие использования двигательной для вращения системы постоянных магнитов или прокачивания электролита, специальных насосов для работы в агрессивных средах, а также ведет к трудностям надежного крепления массивных постоянных магнитов во вращающейся системе, балансировки такой системы и герметизации токовыводов, и напорных трубопроводов.

Целью предлагаемого изобретения является упрощение способа при одновременном увеличении производительности процесса.

Поставленная цель достигается тем, что в известном способе магнитоиндуцируемого электролиза, включающем воздействие на электрохимическую систему магнитным полем, ортогональным плоскости электродов, используют переменное магнитное поле.

В предлагаемом способе магнитоиндуцируемый электролиз осуществляют в статической магнитоэлектрохимической системе в неподвижном электролите с помощью неподвижного источника магнитного поля за счет создания переменного магнитного поля.

В отличие от этого, в известном способе электролиз осуществляют в динамической электрохимической системе при относительном движении электролита и источника постоянного магнитного поля. При этом разность потенциалов на электродах для электролиза получают в предложенном способе за счет ЭДС магнитной индукции, возникающей в электродах, тогда как в известном способе разность потенциалов на электродах получают за счет их поляризации ионным током, возникающим в электролите вследствие действия силы Лоренца на перемещаемые в магнитном поле ионы.

В соответствии с предложенным способом в электрохимической системе, содержащей неизолированные контурные электроды и электролит, создают переменное магнитное поле с противоположным направлением внутри и вне контуров и одинаковым для всех электродов, чем обеспечивают однонаправленный индукционный ток в соответственных участках всех соседних контуров, образующих элементарную электрохимическую ячейку, и ЭДС индукции между этими контурами электродов, достигающую напряжения разложения электролита. При этом в контурах создается электронный ток магнитной индукции, на их поверхности происходит электролиз, а в электролите между соседними участками электрода протекает ионный ток за счет ЭДС магнитной индукции в контуре электрода. То есть электролит является распределенной вдоль контура электрода электрической нагрузкой.

Сущность предложенного способа заключается в преимущественном взаимодействии внешнего магнитного поля с электродами электрохимической системы в виде разомкнутых контуров из проводника первого рода, носителями зарядов в котором являются электроны, и пренебрежимом взаимодействии с окружающим неизолированные электроды неподвижным электролитом-проводником второго рода, носителями зарядов в котором являются ионы. Способ основан на известном физическом явлении электромагнитной индукции, при котором в контуре проводника, помещенном в переменное магнитное поле, возникает электродвижущая сила ЭДС индукции. Если контуром является, например, разомкнутая концентрическая неизолированная спираль, то в ней возникает распределенная межконтурная разность потенциалов, равная ЭДС индукции контура или контуров.

Плотность тока в контуре, вызванная электрическим полем в проводнике, выражается j nev neuE, где n число носителей зарядов в единице объема, е заряд носителя, v средняя скорость их упорядоченного перемещения, u электрическая подвижность заряда, Е напряженность электрического поля. Вместе с тем известно, что подвижность свободных электронов в проводнике первого рода, например, в меди, примерно в 104 раз выше подвижности ионов Н+ и ОН- в электролите проводнике второго рода, а их концентрация превышает концентрацию этих ионов (в случае 35% раствора КОН) примерно в 20 раз, что обуславливает преимущественное взаимодействие переменного магнитного поля с проводником первого рода.

С помощью предложенного способа просто осуществить электролиз в полностью замкнутом объеме статической магнитоэлектрохимической системы без подвода извне электрического тока к электродам. Магнитоиндуцируемый электролиз осуществляется следующим образом. Переменное магнитное поле индукции пронизывает контурные электроды, в них индуцируется межконтурная распределенная разность потенциалов, в электролите создается ионный ток и на электродах протекают электрохимические реакции с выделением газообразных продуктов, например, в случае электролиза воды. Диод позволяет вести электролиз в импульсном режиме.

Сущность способа можно проиллюстрировать на примере электролиза 35% раствора едкого кали, с целью получения водорода и кислорода или их смеси. Электрохимическая система содержит неизолированные электроды в виде медной никелированной цилиндрической спирали, концы витков которой соединены перемычкой из электронного проводника или диода. Электроды помещались в тороидальную диэлектрическую емкость, заполненную электролитом, а сам тороид располагался на магнитопроводе, имеющем первичную обмотку. Первичная обмотка подключалась к промышленной сети и в электрохимической системе создавалось переменное магнитное поле.

П р и м е р 1. Подавая на первичную обмотку регулируемое напряжение с частотой 50 Гц, создаем в области электродов переменное магнитное поле со средним значением магнитной индукции 10 мТ. Сечение магнитопровода составляло 75 см2. Расстояние между электродами равнялось примерно 1 мм. Электрод представлял из себя спираль из медной никелированной шинки, содержащей 100 витков (контуров). На электродах реализовалась ЭДС индукции 1,5 ± 0,1 В. Поместив электродную систему в емкость, содержащую 35% раствор КОН, осуществили электролиз с выделением с 10 см2 поверхности 0,38 л кислородно-водородной смеси в час, что в пересчете на 1 м2 поверхности составит 0,38 м3/ч. В прототипе выход кислородно-водородной смеси с 1 м2 поверхности электрода составляет 0,192 м3/ч.

П р и м е р 2. Подавая на первичную обмотку регулируемое напряжение с частотой 500 Гц, создаем в области электродов переменное магнитное поле со средним значением магнитной индукции 1 Т. Сечение магнитопровода составляло 12 см2, расстояние между электродами 10 мм. Каждый электрод состоял из одного контура. На электродах реализовалась ЭДС индукция 2,5 + 0,1 В. С 1 м2 поверхности электрода при этом выделяется 0,9 м3/ч кислородно-водородной смеси.

П р и м е р 3. Подавая на первичную обмотку регулируемое напряжение частотой 1000 Гц, создаем в магнитопроводе магнитное поле с индукцией 1,4 Т. Расстояние между электродами составляло 20 мм. Каждый электрод состоял из одного контура. На электродах реализовалась ЭДС индукции 5,0 + 0,2 В. С 1 м2 поверхности при этом выделяется 1,4 м3/ч кислородно-водородной смеси.

П р и м е р 4. Условия эксперимента такие же, как в примере 1, но начало и конец контурных электродов соединены с помощью диода. Поэтому реализуется электролиз импульсным током, благодаря чему на определенных участках электродов протекают либо катодные, либо анодные процессы. При этом повышается доля тока, идущая на фарадеевский процесс за счет уменьшения емкостного тока. Результатом является повышение выхода продукта до 0,96 м3/ч с 1 м2 поверхности электрода или на 7+ 0,2%
П р и м е р 5. Подавая на первичную обмотку регулируемое напряжение с частотой 1 Гц, создаем в области электродов переменное магнитное поле со средним значением магнитной индукции 1 Т. Сечение магнитопровода составляло 33 см2. Расстояние между электродами составляло 2 мм. Электрод содержал 100 витков с площадью 100 см2. На электродах реализовалась ЭДС индукции 1,5+ 0,2 В. Поместив электродную систему в емкость, содержащую 35% раствор едкого кали, осуществили электролиз с выделением за 1 ч 0,26 л водородно-кислородной смеси, что в пересчете на 1 м2 поверхности электродов составит 0,26 м3/ч. В прототипе выход газовой смеси составляет с 1 м2 поверхности электрода 0,192 м3/ч.

Таким образом, заявленный способ в сравнении с прототипом обладает рядом преимуществ: является статическим и не требует ни перемещения электролита, ни вращения источников магнитного поля, что ведет к упрощению способа, т.е. достижению поставленной цели.

Похожие патенты RU2032769C1

название год авторы номер документа
РАСТВОР ДЛЯ ЭЛЕКТРОХИМИЧЕСКОГО ПОЛИРОВАНИЯ ЛАТУНЕЙ 1991
  • Дрозд Нила Акимовна[Ua]
RU2026894C1
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА СУРЬМЫ 1991
  • Зарубицкий О.Г.
  • Мелехин В.Т.
  • Будник В.Г.
  • Омельчук А.А.
  • Горбач В.Н.
RU1804030C
СПОСОБ ПОЛУЧЕНИЯ ГИДРОКСИДА СВИНЦА 1991
  • Зарубицкий О.Г.
  • Малашок А.Н.
  • Власенко Г.Г.
RU2006525C1
СПОСОБ РАФИНИРОВАНИЯ ЛЕГКОПЛАВКИХ МЕТАЛЛОВ 1991
  • Омельчук А.А.
  • Мелехин В.Т.
  • Зарубицкий О.Г.
  • Горбач В.Н.
  • Будник В.Г.
  • Казанбаев Л.А.
  • Марченко А.К.
  • Козлов М.Н.
  • Кочетков А.В.
RU1776093C
Способ получения кислорода 1980
  • Ткаленко Дмитрий Анатольевич
  • Присяжный Виталий Демьянович
  • Сажин Сергей Викторович
  • Чмиленко Николай Андреевич
  • Иванова Светлана Максимовна
  • Никитченко Александр Васильевич
SU865982A1
СПОСОБ ХИМИЧЕСКОГО НИКЕЛИРОВАНИЯ 1990
  • Зайченко В.Н.
  • Кузьминская Г.Е.
  • Козин Л.Ф.
  • Кублановская А.И.
  • Яворович А.А.
  • Лях Н.И.
RU2039128C1
Расплав для анодирования материалов с полупроводниковыми свойствами 1982
  • Степанова И.А.
  • Ситенко Т.Н.
  • Василевская Т.Б.
  • Чернухин С.И.
  • Зименко В.И.
SU1086832A1
ЭЛЕКТРОЛИТ ДЛЯ ОСАЖДЕНИЯ ПОКРЫТИЙ ИЗ ТУГОПЛАВКИХ МЕТАЛЛОВ И СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ 1982
  • Васько А.Т.
  • Пацюк Ф.Н.
SU1123321A1
СПОСОБ СВАРКИ МЕТАЛЛОВ И СПЛАВОВ 1991
  • Сафонников А.Н.
RU2014979C1
Электрохимический полупроводниковый фотоэлемент 1985
  • Городыский А.В.
  • Колбасов Г.Я.
  • Карпов И.И.
  • Павелец А.М.
  • Ханат Л.Н.
  • Тараненко Н.И.
SU1292565A1

Реферат патента 1995 года СПОСОБ ПОЛУЧЕНИЯ КИСЛОРОДА И ВОДОРОДА

Сущность изобретения: получают кислород и водород электролизом воды. Электролит помещают в переменное магнитное поле с частотой 1 - 1000 Гц. Значение магнитной индукции 0,01 - 1,4 Т.

Формула изобретения RU 2 032 769 C1

СПОСОБ ПОЛУЧЕНИЯ КИСЛОРОДА И ВОДОРОДА электролизом воды, отличающийся тем, что, с целью упрощения процесса при одновременном увеличении производительности, процесс ведут в переменном магнитном поле с частотой 1 - 1000 Гц со средним значением магнитной индукции 0,01 1,4 т.

Документы, цитированные в отчете о поиске Патент 1995 года RU2032769C1

МОДИФИЦИРОВАННАЯ ГИАЛУРОНОВАЯ КИСЛОТА, СПОСОБ ЕЕ ПОЛУЧЕНИЯ И ЕЕ ПРИМЕНЕНИЯ 2017
  • Краус Андреас
  • Линко Александр
  • Виллен Франк
RU2733444C2
Видоизменение пишущей машины для тюркско-арабского шрифта 1923
  • Мадьяров А.
  • Туганов Т.
SU25A1

RU 2 032 769 C1

Авторы

Балакин В.И.

Бабак А.К.

Зайченко В.Н.

Даты

1995-04-10Публикация

1990-04-10Подача