Изобретение относится к металлургии, в частности к переработке шлаков, скрапа и других металлсодержащих отходов, и может быть использовано для извлечения магнитных, слабомагнитных и немагнитных компонентов из этих материалов.
Известен способ переработки шлаков высокоуглеродистого феррохрома [1] предусматривающий пневматическую и двухстадийную магнитную сепарацию дробленого шлака.
Недостаток способа заключается в сложности технологической схемы, обусловленной наличием встречных потоков и необходимостью циркуляции части шлака в дробильно-сортировочном контуре. Кроме того, пневматическая сепарация сопряжена со значительными пылевыбросами и не может обеспечить посортовое извлечение металлических включений.
Наиболее близок к изобретению способ переработки шлаков от производства немагнитных и слабомагнитных сплавов [2] Решая задачу эффективного извлечения указанных материалов из шлаков, способ не обеспечивает необходимой чистоты выделяемого из исходного шлака концентрата по заданному компоненту (сплаву) за счет неизбежной засоренности сепарируемого продукта малоценными ферромагнитными примесями с близкими к ферросплавам радиометрическими характеристиками.
Сущность предлагаемого способа заключается в следующем.
Дробленые до максимальной крупности кусков 70.150 мм отходы до и после рассева по фракциям подвергают магнитной сепарации при определенной напряженности магнитного поля с целью извлечения посторонних ферромагнитных примесей, существенно превышающих по способности к намагничиванию стандартные ферросплавы. На этой стадии подлежащий дальнейшей сепарации материал освобождают от отходов (лома) черных металлов, что на последующих стадиях переработки повышает эффективность сепарационных приемов.
После рассева по классу 20 мм минусовой продукт направляют на вторую стадию магнитной сепарации. В зависимости от вида отходов и их фракционного состава сепарируемый материал может быть предварительно отклассифицирован по крупности на два или несколько потоков, каждый из которых подвергается индивидуальному режиму сепарации. Напряженность магнитного поля на второй стадии магнитного обогащения превышает этот параметр первой стадии на величину, обеспечивающую извлечение слабомагнитных сплавов определенного вида или сорта, практически свободных от шлака или других фазовых компонентов смеси.
Третья и последующие стадии магнитной сепарации, проводимые при более высокой напряженности поля, направлены на извлечение слабомагнитного сплава в виде сростков его со шлаком или другими практически немагнитными материалами, т.е. обеспечивают получение менее богатого концентрата, чем на предыдущей стадии. Возможен вариант, когда на одной из этих стадий из массы сепарируемого материала избирательно извлекают шлак определенного вида, обладающий слабыми магнитными характеристиками, например, шпинелевидные формы шлака углеродистого феррохрома. За счет этой операции хвостовой продукт обогащается немагнитными фазами смеси, например кремнистыми ферросплавами и шлаками от их выплавки, используемыми для переплава в ферросплавных агрегатах или в роли элементов шихты при выплавке некоторых марок стали.
Отходы крупнее 20 мм после узла рассева подают на радиометрическую сепарацию в два или несколько потоков с соблюдением в соответствии с (2) отношения максимального по крупности куска к размеру минимального по крупности куска в каждом потоке, не превышающем 2,5. Освобожденный от ферромагнитных примесей материал, представляющий собой смесь, например, шлаков от выплавки различных видов ферросплавов, подвергают одной или нескольким стадиям сепарации с выделением соответствующих ценных продуктов. Предварительная одностадийная магнитная сепарация создает благоприятные условия для идентификации слабомагнитных и немагнитных сплавов и их выделения из смеси отходов, так как железосодержащие ферромагнитные примеси затрудняют радиометрическое обнаружение в потоке материала близких по характеристическому и рассеянному излучению ценных металлических компонентов, в особенности ферросплавов.
Введение в технологическую схему второй и последующих стадий магнитной сепарации после дробления перед радиометрической сепарацией для отходов крупностью более 20 мм не дает положительного результата, так как магнитное эффективное извлечение слабомагнитных компонентов из смесей кусков указанной крупности весьма затруднено и технически, как показали испытания, нецелесообразно.
Таким образом, многостадийная магнитная сепарация отходов крупностью 0. 20 мм и одностадийная перед радиометрической сепарацией отходов крупностью более 20 мм повышают эффективность обогащения смесей металлургических отходов в рамках технологического процесса с улучшенными экологическими показателями.
название | год | авторы | номер документа |
---|---|---|---|
Способ переработки шлаков от производства немагнитных и слабомагнитных сплавов | 1991 |
|
SU1774962A3 |
СПОСОБ ПЕРЕРАБОТКИ СМЕСИ ТВЕРДЫХ ШЛАКОВ МЕТАЛЛУРГИЧЕСКОГО ПРОИЗВОДСТВА | 1992 |
|
RU2070229C1 |
Способ переработки шлаков высокоуглеродистого феррохрома | 1988 |
|
SU1527305A1 |
СПОСОБ ПОСОРТОВОГО ИЗВЛЕЧЕНИЯ КОМПОНЕНТОВ ИЗ КУСКОВЫХ МАТЕРИАЛОВ | 1993 |
|
RU2062666C1 |
СПОСОБ ПЕРЕРАБОТКИ ОТВАЛЬНОГО РАСПАДАЮЩЕГОСЯ ШЛАКА | 2006 |
|
RU2347622C2 |
СПОСОБ ПЕРЕРАБОТКИ ШЛАКА | 2004 |
|
RU2298586C2 |
СПОСОБ ПЕРЕРАБОТКИ ОТВАЛЬНЫХ МЕТАЛЛУРГИЧЕСКИХ ШЛАКОВ | 2000 |
|
RU2222619C2 |
СПОСОБ ПЕРЕРАБОТКИ РАСПАДАЮЩЕГОСЯ ШЛАКА | 2006 |
|
RU2353682C2 |
СПОСОБ ПЕРЕРАБОТКИ ПРОМЫШЛЕННЫХ ОТХОДОВ | 1994 |
|
RU2086679C1 |
Способ переработки распадающихся металлургических шлаков | 1987 |
|
SU1740467A1 |
Использование: металлургия, переработка шлаков, скрапа и других металлосодержащих отходов и может применяться для извлечения магнитных, слабомагнитных и немагнитных компонентов. Сущность изобретения: после дробления отходы крупностью 0.20 мм подвергают магнитной сепарации в нескольких стадий, а отходы крупнее 20 мм перед радиометрической сепарацией подвергают одностадийной магнитной сепарации.
СПОСОБ ПЕРЕРАБОТКИ СМЕСЕЙ МЕТАЛЛУРГИЧЕСКИХ ОТХОДОВ, включающий дробление до максимальной крупности кусков 70.150 мм, рассев по классу 20 мм, магнитную и радиометрическую сепарацию фракций отходов, отличающийся тем, что после дробления отходы крупностью 0.20 мм подвергают магнитной сепарации в нескольких стадий, а отходы крупнее 20 мм перед радиометрической сепарацией подвергают одностадийной магнитной сепарации.
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Способ переработки шлаков от производства немагнитных и слабомагнитных сплавов | 1991 |
|
SU1774962A3 |
Машина для добывания торфа и т.п. | 1922 |
|
SU22A1 |
Авторы
Даты
1995-09-20—Публикация
1993-06-09—Подача