Изобретение относится к дроблению и измельчению горных пород, в том числе содержащих ограночное кристаллосырье, и искусственных материалов (шлаки, керамика, корунды и т.д.) электрическими импульсными разрядами.
Известен способ дробления горных пород и руд [1] согласно которому импульс напряжения подается на электроды, между которыми в жидкости находится разрушаемый материал. Разрушение достигается путем электрического пробоя материала.
Недостатком указанного процесса является отсутствие возможности выбора оптимальных параметров при разрушении материалов, имеющих различные физико-механические и электрофизические свойства.
Известно устройство для дробления материалов электрическими разрядами, выбранное за прототип [2] Разрушение материала включает размещение материала в жидкости между электродами, на которые подаются импульсы высокого напряжения, электрический пробой толщи материала и классификацию разрушенного материала.
Недостатками этого изобретения является то, что при его реализации в нем не учитывались физико-механические и электрофизические свойства разрушаемых горных пород и искусственных материалов, что приводит к существенному снижению эффективности разрушения.
Основной технической задачей изобретения является повышение эффективности разрушения горных пород и искусственных материалов, помещенных в жидкость, электрическими импульсными разрядами.
 Как показали результаты экспериментальных исследований, при использовании предлагаемого способа энергоемкость процесса по сравнению с прототипом при разрушении материалов уменьшается на 10-40%
 Поставленная задача достигается тем, что в способе разрушения горных пород и искусственных материалов, включающем размещение материала в корпусе с жидкостью между электродами, на высоковольтные из которых подают импульсы высокого напряжения, электрический пробой толщи материала и его классификацию. Импульсы высокого напряжения подают со скоростью нарастания напряжения не менее 1000 кВ/мкс, а величину энергии импульса выбирают из соотношения
 100 <  < 1000 где W энергия импульса, Дж;
 < 1000 где W энергия импульса, Дж;
 Е модуль Юнга, Н/м2;
 ρ- плотность материала, кг/м3;
 l расстояние между электродами, м;
 σp- предел прочности разрушаемого материала на растяжение, Н/м2.
 При реализации предлагаемого способа на разрушаемый материал, помещенный в жидкость, подается импульс высокого напряжения, достаточный для электрического пробоя материала, причем скорость нарастания напряжения должна быть более, чем 1000 кВ/мкс, что обеспечивает формирование канала разряда внутри твердого тела. Степень разрушения материала зависит от энергетических параметров импульса и от физико-механических свойств материала. Наибольшая эффективность процесса достигается при выборе энергии из соотношения
 100 <  < 1000
 < 1000
 На фиг. 1 приведена принципиальная схема непрерывно работающей камеры, являющейся основным технологическим узлом установки; на фиг.2-3 схематически представлены возможные траектории канала разряда: жидкости, в твердом теле соответственно; на фиг.4 вольтсекундные характеристики; на фиг.5 зависимости энергоемкости.
Рабочая камера имеет высоковольтные электроды 1, корпус 2, заземленный электрод-классификатор 3, загрузочное 4 и разгрузочное 5 устройства.
Способ разрушения горных пород и искусственных материалов осуществляется следующим образом.
Материал через загрузочное устройство 4 подается в рабочую камеру на заземленный электрод-классификатор 3 и попадает под высоковольтные электроды 1, на которые подается импульс высокого напряжения от генератора (на фиг.1 не показан), форма и энергия которого определяет траекторию канала разряда между высоковольтными электродами 1 и заземленным электродом-классификатором 3.
Разрушаемый материал, крупность которого меньше размера отверстий электрода-классификатора 3 попадает в разгрузочный узел 5 и, обезвоживаясь выносится из рабочей камеры.
Наиболее эффективно процесс разрушения проходит в том случае, когда траектория канала разряда формируется внутри твердого тела (фиг.2б), так как при этом разрушаемый материал испытывает растягивающие и сдвиговые напряжения. В случае, если траектория канала разряда сформирована в жидкости (фиг. 2а), то материал может разрушаться за счет усилий сжатия, что требует увеличения энергии импульса в 10-20 раз.
На фиг.3 представлены вольтсекундные характеристики (зависимости электрической прочности от времени воздействия импульса) воды (1-4), микрокварцита (5-8), имеющего максимальную прочность и песчаника (9-12), имеющего минимальную прочность, для толщины 10, 20, 40, 50 мм. Из экспериментальных результатов, представленных на фиг.3, следует, что в зоне 1 электрическая прочность даже материалов (например, микрокварцита), имеющих максимальные прочности, как электрические, так и механические, ниже, чем прочность воды. Это указывает, что при подаче импульса на образец, помещенный в воду, с крутизной нарастания напряжения более, чем значения, ограниченные пунктирной линией от начала системы координат (зона 1), траектория канала будет сформирована в твердом теле (по типу б на фиг.2). Таким образом, для формирования канала разряда в твердом теле скорость нарастания напряжения должна быть не менее 1000 кВ/мкс при амплитуде, достаточной для электрического пробоя материала.
Для эффективного разрушения материала необходимо выделить в канале разряда энергию, количество которой зависит от физико-механических свойств разрушаемого материала.
 На фиг.4 представлены зависимости энергоемкости импульса при разрушении различных материалов от крупности (-60 +2) мм до размера 2 мм от соотношения, в которое входит энергия импульса W, длина рабочего промежутка l, физико-механическая характеристика материала  где σp предел прочности материала на разрыв; Е модуль Юнга, ρ плотность. В экспериментах использовались микрокварциты 1, 2 (коэффициент прочности по Протодъяконову f 18), граниты 3 (f 10), песчаники 4, 5 (f 5), которые охватывают основной диапазон прочностных характеристик горных пород. На фиг.4 также представлены зависимости энергоемкости разрушения для кварцитов (2) и песчаников (4), перечисленные из данных прототипа. Энергия импульса изменялась от 10 до 1000 Дж.
 где σp предел прочности материала на разрыв; Е модуль Юнга, ρ плотность. В экспериментах использовались микрокварциты 1, 2 (коэффициент прочности по Протодъяконову f 18), граниты 3 (f 10), песчаники 4, 5 (f 5), которые охватывают основной диапазон прочностных характеристик горных пород. На фиг.4 также представлены зависимости энергоемкости разрушения для кварцитов (2) и песчаников (4), перечисленные из данных прототипа. Энергия импульса изменялась от 10 до 1000 Дж.
 Из представленных зависимостей (фиг.4) следует, что в диапазоне соотношения 100 <  < 1000 энергоемкость для различных материалов (микрокварцит, гранит, песчаник) минимальна, за этими пределами энергоемкость процесса растет. По сравнению с прототипом (кривые 2 и 4) энергоемкость при заявляемых параметрах на 10% (микрокварцит) и 40% (песчаник) ниже.
 < 1000 энергоемкость для различных материалов (микрокварцит, гранит, песчаник) минимальна, за этими пределами энергоемкость процесса растет. По сравнению с прототипом (кривые 2 и 4) энергоемкость при заявляемых параметрах на 10% (микрокварцит) и 40% (песчаник) ниже.
 Таким образом, используя высоковольтные импульсы со скоростью нарастания напряжения не менее 1000 кВ/мкс и энергией, выбранной с учетом физико-механических свойств разрушаемого материала из соотношения
 100 <  < 1000 энергоемкость процесса уменьшается на 10-40% что дает ощутимый эффект при массовом дроблении материала.
 < 1000 энергоемкость процесса уменьшается на 10-40% что дает ощутимый эффект при массовом дроблении материала.
| название | год | авторы | номер документа | 
|---|---|---|---|
| ЭЛЕКТРОИМПУЛЬСНЫЙ СПОСОБ БУРЕНИЯ СКВАЖИН И БУРОВАЯ УСТАНОВКА | 1996 | 
 | RU2123596C1 | 
| ЭЛЕКТРОИМПУЛЬСНЫЙ СПОСОБ РАЗРУШЕНИЯ ГОРНЫХ ПОРОД И ИСКУССТВЕННЫХ МАТЕРИАЛОВ | 1997 | 
 | RU2142562C1 | 
| СПОСОБ РАЗРУШЕНИЯ ГОРНЫХ ПОРОД | 1995 | 
 | RU2083824C1 | 
| ЭЛЕКТРОИМПУЛЬСНЫЙ СПОСОБ РАЗРУШЕНИЯ ГОРНЫХ ПОРОД | 2003 | 
 | RU2232271C1 | 
| СПОСОБ ИЗГОТОВЛЕНИЯ ИЗДЕЛИЙ ИЗ НЕКОНДИЦИОННОГО ЖЕЛЕЗОБЕТОНА | 1995 | 
 | RU2081259C1 | 
| СПОСОБ РАЗРУШЕНИЯ ДИЭЛЕКТРИЧЕСКИХ И ПОЛУПРОВОДЯЩИХ МАТЕРИАЛОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1992 | 
 | RU2035231C1 | 
| ВЫСОКОВОЛЬТНАЯ ЭЛЕКТРОДНАЯ СИСТЕМА ДЛЯ ЭЛЕКТРОИМПУЛЬСНОГО РАЗРУШЕНИЯ БЕТОННЫХ И ЖЕЛЕЗОБЕТОННЫХ ИЗДЕЛИЙ | 1993 | 
 | RU2099142C1 | 
| ЭЛЕКТРОИМПУЛЬСНЫЙ БУР | 2004 | 
 | RU2283937C2 | 
| СПОСОБ ОЧИСТКИ ТРУБОК ТЕПЛООБМЕННИКА ОТ НАКИПИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1992 | 
 | RU2049302C1 | 
| СПОСОБ ОБЕЗВОЖИВАНИЯ УГЛЕВОДОРОДНЫХ ЖИДКОСТЕЙ | 1999 | 
 | RU2174857C2 | 
Использование: в области дробления горных пород электрическими импульсными разрядами. Сущность изобретения: разрушаемый материал помещают в жидкость между электродами, на которые подают электрические импульсы с амплитудой напряжения, достаточной для пробоя материала. Импульсы подают со скоростью нарастания напряжения не менее 1000 кв/мкс. Величину энергии подаваемого импульса выбирают из представленного соотношения. После пробоя осуществляют классификацию разрушенного материала. 5 ил.
 СПОСОБ РАЗРУШЕНИЯ ГОРНЫХ ПОРОД И ИСКУССТВЕННЫХ МАТЕРИАЛОВ, включающий размещение материала в корпусе с жидкостью между электродами, на высоковольтные из которых подают импульсы высокого напряжения, электрический прибой толщи материала и его классификацию, отличающийся тем, что импульсы высокого напряжения подают со скоростью нарастания напряжения не менее 1000 кВ/мкс, а величину энергии импульса выбирают из соотношения
 где W энергия импульса, Дж;
 E модулью Юнга, Н/м2;
 ρ плотность материала, кг/м3;
 l расстояние между электродами, м;
 sp предел прочности разрушаемого материала на растяжение, Н/м2.
| Аппарат для очищения воды при помощи химических реактивов | 1917 | 
 | SU2A1 | 
| Устройство для дробления материалов электрическими разрядами | 1990 | 
 | SU1761279A1 | 
| Аппарат для очищения воды при помощи химических реактивов | 1917 | 
 | SU2A1 | 
Авторы
Даты
1995-10-10—Публикация
1992-11-10—Подача