Изобретение относится к двигателестроению, а именно к миниатюрным двигателям, работающим по циклу Стирлинга, и может быть использовано в медицине для привода насоса крови, в автономных энергетических установках систем навигации и систем жизнеобеспечения в труднодоступных районах, на космических и подводных аппаратах, длительное время работающих без участия человека.
Известны двигатели [1] работающие по замкнутому регенеративному циклу Стирлинга, содержащие цилиндр, разделенный вытеснителем на две полости: горячую, примыкающую к нагревателю, и холодную, примыкающую к охладителю, сообщенные между собой через регенератор, и рабочий цилиндр, разделенный поршнем на две камеры: надпоршневую, сообщенную с холодной полостью цилиндра, и подпоршневую. Так как эти двигатели миниатюрны, то для уменьшения "мертвого" объема в качестве теплообменников использован кольцевой зазор между стенками цилиндра и вытеснителя.
Наиболее близким по технической сущности к предлагаемому является двигатель Стирлинга [2] который содержит по меньшей мере один цилиндр и установленные в нем пустотелый вытеснитель и поршень, разделяющие объем цилиндра на горючую и холодную полости, сообщенные между собой через нагреватель, регенератор и охладитель. В этом двигателе Стирлинга функции нагревателя, регенератора и охладителя также могут выполнять стенки цилиндра и вытеснителя и кольцевой зазор между ними.
Недостатком такого двигателя является его низкий КПД из-за низкой эффективности теплообменников. При движении вытеснителя к верхнему положению рабочее тело из горячей полости через нагреватель, pегенеpатоp и охладитель перемещается в холодную полость и охлаждается. При прохождении по кольцевому зазору между вытеснителем и цилиндром рабочее тело отдает некоторое количество теплоты стенкам цилиндра и вытеснителя, которые выполняют роль регенератора. При прохождении через охладитель часть теплоты от рабочего тела отводится в охлаждающую среду. Ввиду того, что поверхности регенератора и охладителя невелики (цилиндр и вытеснитель имеют гладкие цилиндрические поверхности), то рабочее тело попадает в холодную полость с повышенной температурой. При движении вытеснителя к нижнему положению рабочее тело из холодной полости через теплообменники щелевого типа перемещается в горячую полость и прогревается. Но из-за небольшой поверхности теплообмена рабочее тело попадает в горячую полость с пониженной температурой. Таким образом малая поверхность теплообменников уменьшает градиент температур между горячей и холодной полостями, что и приводит к уменьшению перепада давления в цилиндре двигателя, уменьшению индикаторной и выходной мощности, а следовательно, и к снижению КПД двигателя Стирлинга. Кроме того, при прохождении рабочим телом кольцевого зазора между цилиндром и вытеснителем теплообмен между рабочим телом и стенками цилиндра и вытеснителя происходит в слоях рабочего тела, непосредственно примыкающих к стенкам цилиндра и вытеснителя, а остальная, т. е. средняя часть потока рабочего тела практически не участвует в теплообмене между рабочим телом и стенками цилиндра и вытеснителя из-за того, что в кольцевом зазоре не происходит перемешивания рабочего тела и поэтому рабочее тело попадает в холодную полость с повышенной температурой, а в горячую полость с пониженной температурой. Таким образом, за счет гладких поверхностей цилиндра и вытеснителя в кольцевом зазоре между стенками цилиндра и вытеснителя не происходит перемешивания рабочего тела, что приводит к снижению коэффициента теплоотдачи между рабочим телом и стенками цилиндра и вытеснителя, уменьшению индикаторной и выходной мощности, а следовательно, и снижению КПД двигателя Стирлинга.
Целью изобретения является повышение КПД двигателя Стирлинга за счет увеличения поверхности теплообмена и повышения коэффициента теплоотдачи между рабочим телом и стенками цилиндра и вытеснителя.
Поставленная цель достигается тем, что в известном двигателе Стирлинга, содержащем по меньшей мере один цилиндр и установленные в нем пустотелый вытеснитель и поршень, разделяющие объем цилиндра на горячую и холодную полости, сообщенные между собой через нагреватель, регенератор и охладитель, вытеснитель снабжен выступами, расположенными на его наружной боковой поверхности в шахматном порядке с зазором по отношению к цилиндру и имеющими форму простой геометрической фигуры (прямоугольник, параллелограмм, треугольник, круг, овал). Вытеснитель выполнен из жаропрочного титанового сплава и заполнен ксеноном.
На фиг. 1 изображен предлагаемый двигатель с перфорированными выступами на наружной боковой поверхности вытеснителя круглой формы, разрез; на фиг.2 вариант выполнения двигателя с выступами вытеснителя прямоугольной формы; на фиг.3 и 4 варианты выполнения двигателя с выступами вытеснителя, выполненными в виде параллелограмма; на фиг.5 то же, с выступами вытеснителя треугольной формы.
Двигатель содержит по меньшей мере один цилиндр 1 и установленные в нем пустотелый вытеснитель 2 и поршень 3, разделяющие объем цилиндра 1 на горячую 4 и холодную 5 полости, сообщенные между собой через нагреватель 6, регенератор 7 и охладитель 8, функции которых выполняют стенки цилиндра 1 и вытеснителя 2 и зазор между ними. Поршень 3 снабжен штоком 9 для передачи движения приводному механизму (не показан). Вытеснитель 2 снабжен равномерно расположенными на его наружной боковой поверхности выступами 10, выполненными заодно с вытеснителем 2 и зазором по отношению к цилиндру 1. Выступы 10 вытеснителя 2 могут быть выполнены круглой (фиг.1), треугольной или любой другой произвольной формы. Для упрощения технологии изготовления выступы 10 вытеснителя 2 выполнены прямоугольной или квадратной формы (фиг.2), а также в виде параллелограмма или ромба (фиг.3 и 4) или треугольной формы (фиг.5), т. е. получены путем механической обработки на токарном станке без использования каких-либо приспособлений. Выступы 10 вытеснителя 2 можно получить и путем нарезания на наружной поверхности вытеснителя любых многозаходных резьб в разных направлениях, т.е. правосторонних и левосторонних. Точно такие же выступы можно получить и выполнить и на внутренней поверхности цилиндра 1. Для уменьшения тепловых потерь из горячей полости 4 в холодную 5 за счет теплопроводности вытеснитель 2 выполнен из материала с низким коэффициентом теплопроводности, например, из жаропрочных титановых сплавов типа ВТ 18. Для уменьшения тепловых потерь из горячей полости 4 в холодную 5 за счет конвекции вытеснитель 2 заполнен газом с низким коэффициентом теплопроводности, например ксеноном.
Двигатель работает следующим образом.
Теплота подводится к нагревателю 6 и горючей полости 4 и отводится от охладителя 8 и холодной полости 5. При движении вытеснителя 2 вверх рабочее тело из горячей полости 4 через нагреватель 6, регенератор 7 и охладитель 8, т. е. через каналы между выступами 10 и зазоры между цилиндром 1 и вытеснителем 2, перемещается в холодную полость 5 и охлаждается. Давление в цилиндре 1 при этом понижается, а поршень 3 за счет усилия, действующего на шток 9 от приводного механизма (не показан), перемещается в верхнее положение, осуществляя сжатие рабочего тела. После реверса вытеснитель 2 перемещается вниз. При этом рабочее тело из холодной полости 5 через охладитель 8, регенератор 7 и нагреватель 6, т.е. между выступами 10 вытеснителя 2 и цилиндром 1, перемещается в горячую полость 4 и прогревается. Давление в цилиндре 1 при этом повышается и воздействует на поршень 3, который под действием этого давления начинает двигаться к нижнему положению, совершая расширение рабочего тела и полезную работу, передаваемую через шток 9 приводному механизму (не показан). После реверса вытеснителя 2 к верхнему положению цикл повторяется.
Наличие равномерно расположенных на наружной боковой поверхности вытеснителя выступов, выполненных заодно с вытеснителем и с зазором по отношению к цилиндру, позволяет повысить КПД двигателя не только за счет увеличения поверхности теплообмена, но и за счет увеличения коэффициента теплоотдачи между рабочим телом и стенками цилиндра и вытеснителя путем турбулизации и перемешивания рабочего тела в зазоре между цилиндром и вытеснителем. Использование материала с низким коэффициентом теплопроводности для изготовления вытеснителя позволяет сократить тепловые потери из горячей полости в холодную за счет теплопроводности, а использование газа с низким коэффициентом теплопроводности для заполнения вытеснителя позволяет сократить тепловые потери из горячей полости в холодную за счет конвекции.
название | год | авторы | номер документа |
---|---|---|---|
ДВИГАТЕЛЬ СТИРЛИНГА | 1991 |
|
RU2100634C1 |
ДВИГАТЕЛЬ СТИРЛИНГА | 1990 |
|
SU1692206A1 |
ТЕПЛОВОЙ БЛОК ДВИГАТЕЛЯ СТИРЛИНГА | 2022 |
|
RU2788798C1 |
Тепловой блок двигателя Стирлинга | 2021 |
|
RU2757746C1 |
ДВИГАТЕЛЬ СТИРЛИНГА | 1990 |
|
SU1692205A1 |
ДВИГАТЕЛЬ СТИРЛИНГА | 1991 |
|
RU2008489C1 |
СПОСОБЫ УВЕЛИЧЕНИЯ ЭФФЕКТИВНОСТИ ТЕПЛООБМЕННЫХ ПРОЦЕССОВ В ДВИГАТЕЛЕ СТИРЛИНГА | 2021 |
|
RU2801167C2 |
АНАЭРОБНАЯ ЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА С ДВИГАТЕЛЕМ СТИРЛИНГА И РОТОКЛОННЫМ РЕАКТОРОМ | 1996 |
|
RU2103535C1 |
ТЕПЛООБМЕННАЯ ЧАСТЬ ДВИГАТЕЛЯ СТИРЛИНГА | 2013 |
|
RU2549273C1 |
Двигатель с внешним подводом тепла | 1979 |
|
SU892000A1 |
Сущность изобретения: двигатель содержит цилиндр 1 и установленные в нем вытеснитель 2 и поршень 3, разделяющие объем цилиндра 1 на горячую 4 и холодную 5 полости, сообщенные между собой через нагреватель 6, регенератор 7 и охладитель 8. Поршень 3 снабжен штоком 9 для передачи движения приводному механизму. Вытеснитель 2 снабжен равномерно расположенными на его наружной боковой поверхности перфорированными выступами 10, выполненными заодно с вытеснителем 2 и с зазором по отношению к цилиндру 1 и позволяющими увеличить поверхность теплообмена и коэффициент теплоотдачи между рабочим телом и стенками цилиндра 1 и вытеснителя 2. 7 з. п. ф-лы, 5 ил.
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Двигатели Стрлинга | |||
Под ред | |||
М.Г.Круглова | |||
М.: Машиностроение, 1977, с.93 (рис.50), 94. |
Авторы
Даты
1995-10-10—Публикация
1989-04-25—Подача