Изобретение относится к машиностроению и может быть использовано, например, в качестве двигателя летательного аппарата.
Известно устройство для преобразования тепловой энергии в механическую работу двигатель Стирлинга.
К недостаткам известного устройства следует отнести сложную конструкцию, обусловленную наличием ромбического механизма, передающего движение от двух поршней со сложной кинематикой взаимного движения валу отбора мощности.
В качестве прототипа выбрана тепловая труба, преобразующая тепловую энергию в электрическую.
К недостаткам устройства-прототипа следует отнести сложность конструкции, обусловленную наличием насоса для перекачивания теплоносителя из зоны конденсации в зону испарения.
Вторым недостатком известного устройства является длинная цепочка преобразований одного вида энергии в другой, в конце которой находится термо-ЭДС. Указанное обстоятельство характеризует крайне низкий эффективный КПД установки в целом.
Целью изобретения является упрощение конструкции и повышение КПД преобразователя тепловой энергии.
Это достигается тем, что преобразователь тепловой энергии в механическую работу, работающий по циклу Ренкина, содержит испаритель, конденсатор, тепловую машину, расположенную между конденсатором и испарителем, и насос для перекачивания конденсата в жидкой фазе из конденсатора в испаритель.
Согласно изобретению преобразователь тепловой энергии в механическую работу содержит герметичный корпус заполненный теплоносителем с зоной испарения, транспорта и конденсации, многоступенчатую турбину с рабочими лопатками, закрепленными на диске, жестко связанную с зоной транспорта, и направляющий аппарат, обод, два кольцевых магнита, цапфу турбины, фундамент и дополнительные лопатки, причем обод жестко скреплен с рабочими лопатками, между наружной поверхностью обода и внутренней поверхностью корпуса образован зазор, лопатки направляющего аппарата установлены на диске, насаженном на цапфу турбины с возможностью вращения, один из кольцевых магнитов охватывает лопатки направляющего аппарата и установлен с зазором относительно корпуса, а второй кольцевой магнит установлен соосно с первым с зазором относительно внешней поверхности корпуса и закреплен на фундаменте, при этом корпус выполнен в форме усеченного конуса, у основания которого расположена зона испарения, и установлен с возможностью вращения.
Для предотвращения перетечек тепла из зоны испарения в зону конденсации по корпусу преобразователя вследствие явления теплопроводности часть зоны транспорта, в которой установлена турбина, выполнена из теплоизоляционного материала.
При работе преобразователя теплоноситель в зоне испарения под действием непрерывно подводимой тепловой энергии испаряется и поступает на рабочие лопатки турбины, вследствие чего корпус преобразователя получает вращательное движение. Проходя через лопатки направляющего аппарата, теплоноситель охлаждается в зоне конденсации, переходит в жидкую фазу и осаждается на стенках корпуса преобразователя тепловой энергии.
Благодаря вращению корпуса преобразователя, а также с учетом того обстоятельства, что корпус преобразователя выполнен в форме усеченного конуса, на частицу жидкости массой m действует осевая сила F2, направленная в сторону зоны испарения, которую можно определить по формуле
F2 m ω2 r · sin α где F осевая сила;
m масса частицы теплоносителя в жидкой фазе, ω угловая скорость вращения корпуса преобразователя;
r радиус корпуса преобразователя в зоне транспорта;
α угол конусности корпуса пребразователя.
В зоне транспорта в зазор между корпусом преобразователя и ободом рабочего колеса турбины, а также ободом направляющего аппарата возникают встречные потоки теплоносителя теплоносителя в парообразном состоянии из зоны испарения в зону конденсации, и теплоносителя в жидкой фазе из зоны конденсации в зону испарения. При этом жидкий теплоноситель в виде пленки прилегает к корпусу преобразователя, а теплоноситель в парообразном состоянии расположен между пленкой и ободом рабочего колеса и ободом направляющего аппарата.
Для создания газодинамического сопротивления потоку теплоносителя в парообразном состоянии из зоны испарения в зону конденсации согласно изобретению на ободах рабочего колеса турбины и ободах направляющего аппарата выполнены кольцевые канавки, выполняющие функции лабиринтного уплотнения.
Для создания местного разрежения в зоне поступления жидкого теплоносителя в испаритель согласно изобретению на ободе рабочих лопаток со стороны основания выполнены дополнительные лопатки.
Назначение двух кольцевых магнитов передавать противомомент от вращения рабочих колес турбины и корпуса преобразователя фундаменту или корпусу летательного аппарата.
На фиг.1 представлен преобразователь тепловой энергии в механическую работу, общий вид; на фиг.2 теплоизоляционное кольцо, являющееся частью корпуса преобразователя, фрагменты лопаток турбины и направляющего аппарата, ободы с лабиринтными уплотнениями, а также дополнительные лопатки рабочих колес турбины; на фиг.3 разрез А-А на фиг.1 (рабочее колесо турбины с лопатками, цапфа и теплоизоляционное кольцо); на фиг.4 разрез Б-Б на фиг.1; на фиг.5 вид по стрелке В на фиг.1; на фиг.6 векторы сил, действующих на частицу жидкости, переносимой из зоны конденсации в зону испарения.
В качестве примера представлен преобразователь тепловой энергии в механическую работу с одноступенчатой турбиной.
Преобразователь тепловой энергии в механическую работу содержит герметичный корпус 1 в форме усеченного конуса, частично заполненного теплоносителем, установленный с возможностью вращения вокруг продольной оси. Корпус преобразователя содержит испарительную 2 и конденсационную 3 зоны. В корпусе содержится теплоизоляционное кольцо 4, являющееся элементом корпуса и жестко закрепленное как с испарительным участком 5, так и с конденсационным участком 6 корпуса.
К теплоизоляционному кольцу жестко крепится рабочее колесо 7 турбины с рабочими лопатками 8, охваченными ободом 9, с образованием кольцевого зазора 10 между теплоизоляционным кольцом и ободом рабочего колеса. Рабочее колесо турбины снабжено цапфой 11, на которой установлено второе колесо 12 турбины с направляющими лопатками 13, охваченными ободом 14 с образованием кольцевого зазора 15. При этом обод второго колеса турбины представляет собой внутренний кольцевой магнит. Над внутренним кольцевым магнитом установлен внешний кольцевой магнит 16, жестко связанный с фундаментом 17. В ободах рабочего колеса и дополнительного колеса турбины содержатся кольцевые канавки 18. Обод рабочего колеса турбины со стороны зоны испарения снабжен дополнительными лопатками 19.
Преобразователь тепловой энергии в механическую работу работает следующим образом.
При подводе тепла к испарительному участку 5 и отводе тепла от конденсационного участка 6 корпуса 1 теплоноситель в зоне испарения 2 переходит из жидкого в парообразное состояние и под давлением поступает на рабочие лопатки 8 рабочего колеса 7 турбины. После этого теплоноситель проходит через направляющие лопатки 13 второго колеса 12 турбины и поступает в конденсационную зону 3 преобразователя. Отдав часть тепла в конденсаторе 6, теплоноситель переходит в жидкую фазу и осаждается на стенках корпуса 1 преобразователя. Поскольку второе колесо 12 турбины посредством двух кольцевых магнитов 14 и 16 зафиксировано от вращения по отношению к фундаменту 17, вращение получает рабочее колесо 7 совместно с корпусом 1 преобразователя.
Теплоноситель в жидкой фазе, осевший на стенках конденсационного участка 6, под действием осевой составляющей F2 силы направляется в сторону зоны испарения 2, проходит кольцевые зазоры 15 и 10 и попадает в испарительную зону 2 преобразователя, где вновь испаряется.
Во избежание срыва потока теплоносителя в жидкой фазе на транспортном участке кольцевые канавки 18 ободов 9 и 14 колес 7 и 12 создают дополнительное газодинамическое сопротивление движению встречного потока теплоносителя в парообразном состоянии через кольцевые зазоры 10 и 15, а дополнительные лопатки 19 создают разрежение на участке входа теплоносителя в зону испарения 2.
В предложенном техническом решении все четыре элемента тепловой машины, т. е. испаритель, конденсатор, преобразователь энергии (турбина) и насос заключены в одном герметичном корпусе, что и обусловливает простоту конструкции и надежность работы предложенного преобразователя.
Преобразователь тепловой энергии может работать при любой ориентации в пространстве.
Источником энергии преобразователя может служить практически любое топливо, в том числе и солнечная энергия.
Области применения преобразователя: бортовой источник питания в космических аппаратах; двигатель летательных аппаратов; стационарные двигатели большой мощности.
В реальных условиях турбина преобразователя должны быть выполнена многоступенчатой 3-5 ступеней.
название | год | авторы | номер документа |
---|---|---|---|
ДВИГАТЕЛЬ ВНЕШНЕГО СГОРАНИЯ | 2011 |
|
RU2472005C2 |
ДВИГАТЕЛЬ ВНЕШНЕГО СГОРАНИЯ | 2013 |
|
RU2545107C2 |
ДВИГАТЕЛЬ ВНЕШНЕГО СГОРАНИЯ | 2015 |
|
RU2586236C1 |
ПРЕОБРАЗОВАТЕЛЬ СОЛНЕЧНОЙ ЭНЕРГИИ В ЭЛЕКТРИЧЕСКУЮ | 2009 |
|
RU2418247C2 |
ТРЕХЗВЕННЫЙ РОТОРНО-КУЛАЧКОВЫЙ МЕХАНИЗМ | 1991 |
|
RU2053422C1 |
ТРЕХЗВЕННЫЙ РОТОРНО-КУЛАЧКОВЫЙ МЕХАНИЗМ | 1989 |
|
RU2035651C1 |
РОТОРНАЯ МАШИНА С ВРАЩАЮЩИМСЯ КОРПУСОМ | 1991 |
|
RU2044163C1 |
ТЕПЛОВОЙ ДВИГАТЕЛЬ | 2009 |
|
RU2384735C1 |
РОТОРНАЯ МАШИНА | 1990 |
|
RU2018712C1 |
ТЕПЛОТРУБНЫЙ НАСОС | 2008 |
|
RU2371612C1 |
Использование: в машиностроении, для преобразования химической энергии топлива, а также солнечной энергии в механическую энергию вращения вала. Сущность изобретения: преобразователь тепловой энергии в механическую работу содержит герметичный корпус 1 в форме усеченного конуса, частично заполненный теплоносителем. Корпус содержит испарительную 2 и конденсационную 3 зоны, а также адиабатный участок. В корпусе содержится теплоизоляционное кольцо 4, являющееся элементом корпуса и жестко скрепленное как с испарительным участком 5, так и с конденсационным участком 6 корпуса. К теплоизоляционному кольцу жестко крепится рабочее колесо 7 турбины с рабочими лопатками 8, охваченными ободом 9, с образованием кольцевого зазора 10 между теплоизоляционным кольцом и ободом рабочего колеса. Рабочее колесо турбины снабжено цапфой 11, на которой установлено второе колесо 12 турбины с направляющими лопатками 13, охваченными ободом 14 с образованием кольцевого зазора 15. Обод второго колеса турбины представляет собой внутренний кольцевой магнит. Над внутренним кольцевым магнитом установлен внешний кольцевой магнит 16, жестко связанный с фундаментом 17. В ободах рабочего и второго колес турбины содержатся кольцевые канавки. Обод рабочего колеса турбины со стороны зоны испарения снабжен дополнительными лопатками. 2 з. п. ф-лы, 6 ил.
Тепловая труба | 1979 |
|
SU826189A2 |
Видоизменение прибора с двумя приемами для рассматривания проекционные увеличенных и удаленных от зрителя стереограмм | 1919 |
|
SU28A1 |
Приспособление для изготовления в грунте бетонных свай с употреблением обсадных труб | 1915 |
|
SU1981A1 |
Авторы
Даты
1996-03-20—Публикация
1993-01-21—Подача