УСТРОЙСТВО ДЛЯ ПЕРФОРАЦИИ СКВАЖИН Российский патент 1996 года по МПК E21B43/117 

Описание патента на изобретение RU2057910C1

Изобретение относится к нефтяной и газовой промышленности, а именно к устройствам для перфорации обсадных труб в скважине, а также к оборудованию для вскрытия продуктивных пластов.

Для перфорации различных скважин широко применяют в основном стреляющие перфораторы, которые по принципу действия подразделяются на пулевые и кумулятивные. Пулевые перфораторы /1/ применимы в основном на глинистых породах, поскольку перфорация скважин сопровождается большим трещинообразованием в породе. Также ограничена применимость пулевых перфораторов для работ на больших глубинах /2/. Основным недостатком кумулятивных перфораторов являются значительные повреждения труб и цементного кольца, что существенно осложняет последующую эксплуатацию скважины.

Наиболее близким по технической сущности к предлагаемому устройству является гидропескоструйный перфоратор, работа которого основана на разрушающем воздействии высокоскоростной струи жидкости, содержащей абразивный материал, например кварцевый песок.

Устройство содержит источник рабочего тела в виде взвеси песка в воде, корпус и сопловой блок, расположенный на боковой поверхности корпуса. Устройство спускается в скважину, а затем взвесь песка с водой, имеющая высокую скорость истечения через насосно-компрессорные трубы и сопла направляется на стенку скважины, промывая в ней, цементном кольце и породе каналы. При использовании гидропескоструйных перфораторов достигаются лучшие результаты по сравнению с известными, однако такой метод перфорации применяется мало ввиду высокой стоимости работ, низкой производительности, ограничения по глубинам, аварийности и громоздкости оборудования.

Для работы гидропескоструйных перфораторов необходимо громоздкое наземное оборудование для получения в достаточном количестве взвеси с давлением истечения свыше 100 МПа, надежные уплотнители, специальная запорная арматура, магистрали. Кроме того, рабочие кромки в соплах подвержены интенсивному износу, что требует для их изготовления специальных дорогостоящих материалов.

Задачей изобретения является создание автономного устройства, позволяющего повысить эффективность перфорации, заключающуюся в повышении производительности при снижении себестоимости и трудоемкости.

В предлагаемом изобретении источник рабочего тела размещен внутри корпуса и выполнен в виде набора зарядов твердого топлива, содержащих различные абразивные частицы.

Размещение источника рабочего тела внутри корпуса обеспечивает автономную работу устройства, а выполнение его в виде набора зарядов твердого топлива с различными абразивными частицами, вызывающими наибольшее разрушительное воздействие на определенный тип материала, способствует повышению эффективности перфорации скважин, поскольку в целом процесс состоит из последовательных стадий: пробивка металлической стенки обсадной трубы, затрубного цементного камня и породы.

Для осуществления перфорации металлической стенки обсадной трубы важное значение имеет высокотемпературный нагрев, а при пробивки затрубного цементного кольца и породы определяющим фактором воздействия является эрозионное разрушение.

Для предотвращения возникновения усилий и моментов, заклинивающих устройство в стволе скважины при его работе количество сопел в одном сечении должно составлять 3 и более штук. Кроме того, для осуществления щелевой перфорации вдоль скважинного ствола возможно расположение сопел по образующей боковой поверхности корпуса.

С целью обеспечения надежной и продолжительной работы устройства была проведена отработка геометрического профиля сопла. При этом установлено, что углы полураствора входной (β) и выходной части сопла (α) должны находиться в пределах
50о < β< 60о
3о < α< 6о
При значениях угла полураствора входной части сопла β> 60о наблюдается значительное эрозионное разрушение стенок сопла. Уменьшение угла полураствора входной части сопла β < 50о приводит к необходимости увеличения размеров соплового блока, что является невозможным ввиду ограничения размеров скважины. Выходная часть сопла играет существенную роль в формировании режущей способности струи. Установлено, что при значениях угла полураствора выходной части сопла α < 3о обнаруживается разгар рабочих кромок сопла. При значениях α > 6о происходит существенное снижение энергетической эффективности гетерогенной струи ввиду ее значительного расширения, что и вызывает ослабление газодинамического и эрозионного воздействия.

Устройство позволяет проводить перфорацию с высокой скоростью, в несколько раз быстрее пескоструйного перфоратора без запирания пор продуктивного пласта, а наоборот, способствуя повышению проницаемости прискважинной зоны пласта, поскольку процесс основан на газодинамическом, термохимическом и эрозионном воздействии высокотемпературной гетерогенной струи на преграду.

Стендовые испытания, проведенные на образцах, моделирующих обсадную колонну, затрубный цементный камень и породу при атмосферном давлении и в условиях высокого давления, соответствующего глубине погружения до 2000 м, подтвердила пробивную (режущую) способность устройства.

На фиг.1 представлена общая схема конструкции устройства; на фиг.2 углы выходной и входной части сопла.

Устройство представляет собой цилиндрический корпус 1 с полукруглым торцом, содержащий источник рабочего тела 2, выполненный в виде набора зарядов твердого топлива, содержащих различные абразивные частицы и сопловой блок 3. Форма заряда может быть различной (канальной или цилиндрической) в зависимости от условий работы устройства. Воспламенитель 4 состоит из дымного пороха и стандартного электрокапсюльного воспламенителя.

Разрывная мембрана 5 предусмотрена для сброса избыточного давления. Центрирование устройства в скважине при подъемно-спусковых работах обеспечивают металлические обручи 6. Цифрами 7, 8, 9 обозначены металлическая стенка обсадной трубы и затрубный цементный камень и порода соответственно.

Устройство работает следующим образом. При помощи воспламенителя 4 поджигается заряд твердого топлива 2, продукты горения которого, образующие высокотемпературный поток газа с абразивными частицами, поступают в сопловой блок 3, а затем через отдельные сопла под давлением истекают наружу и попадают на стенку обсадной трубы. В результате такого воздействия происходит процесс теплоэрозионного разрушения стенки обсадной трубы и затрубного камня.

К сказанному следует добавить, что высокая энергоемкость, технологичность процесса, автономность, малые габариты и низкая себестоимость позволяют составлять гирлянды из нескольких перфораторов и проводить одновременно перфорацию скважинного ствола на различных уровнях.

Похожие патенты RU2057910C1

название год авторы номер документа
СПОСОБ ТЕПЛОЭРОЗИОННОЙ РЕЗКИ 1993
  • Абалтусов В.Е.
  • Алексеенко Н.Н.
  • Немова Т.Н.
  • Зима В.П.
  • Полежаев Ю.В.
  • Михатулин Д.С.
RU2066603C1
УСТРОЙСТВО ДЛЯ ПЕРФОРАЦИИ СКВАЖИН 2001
  • Кузнецов Г.В.
  • Немова Т.Н.
  • Рыбасова Н.Л.
RU2249679C2
АВТОНОМНОЕ УСТРОЙСТВО ДЛЯ ТЕРМОМЕХАНИЧЕСКОЙ РЕЗКИ ТВЕРДЫХ МАТЕРИАЛОВ 1993
  • Абалтусов В.Е.
  • Алексеенко Н.Н.
  • Немова Т.Н.
RU2057991C1
УСТРОЙСТВО ДЛЯ ПЕРФОРАЦИИ СКВАЖИН 2001
  • Кузнецов Г.В.
  • Немова Т.Н.
  • Рыбасова Н.Л.
RU2233969C2
СПОСОБ ТЕРМОДИНАМИЧЕСКОЙ ПЕРФОРАЦИИ ОБСАЖЕННОЙ СКВАЖИНЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1993
  • Волдаев Николай Александрович
RU2077660C1
ПЕРФОРАТОР 1990
  • Дубинин В.А.
  • Слиозберг Р.А.
  • Гудок А.М.
  • Романов Е.П.
  • Росторгуев А.Н.
  • Аксененко Д.Д.
  • Шандаков В.А.
  • Гайворонский Н.И.
  • Чихладзе Н.С.
  • Крощенко В.Д.
  • Пилюгин Л.А.
RU2015311C1
ПЕРФОРАТОР 1992
  • Дубинин В.А.
  • Слонич Е.В.
  • Романов Е.П.
  • Росторгуев А.Н.
  • Ревякин А.И.
  • Пестряков В.А.
  • Гайворонский Н.И.
  • Чихладзе Н.С.
RU2024739C1
ПЕРФОРАТОР ДЛЯ ОБСАДНЫХ ТРУБ НЕФТЯНЫХ И ГАЗОВЫХ СКВАЖИН 2001
  • Вахрушев А.В.
  • Алиев А.В.
  • Липанов А.М.
  • Шилов Н.А.
  • Злобин В.Ю.
  • Сунцов А.Н.
RU2206721C2
УСТРОЙСТВО ДЛЯ ЛИКВИДАЦИИ АСФАЛЬТОСМОЛОПАРАФИНОВЫХ ОТЛОЖЕНИЙ 2001
  • Мельников Н.М.
  • Князев М.А.
  • Кузнецов Г.В.
  • Немова Т.Н.
  • Рыбасова Н.Л.
RU2232259C2
УСТРОЙСТВО ДЛЯ ГИДРОПЕСКОСТРУЙНОЙ ПЕРФОРАЦИИ 2002
  • Пешков В.Е.
RU2230889C2

Иллюстрации к изобретению RU 2 057 910 C1

Реферат патента 1996 года УСТРОЙСТВО ДЛЯ ПЕРФОРАЦИИ СКВАЖИН

Использование: при перфорации обсадных труб в скважине, обеспечивает повышение эффективности перфорации. Сущность изобретения: устройство включает источник рабочего тела и корпус. Внутри корпуса помещен сопловой блок. Источник рабочего тела выполнен в виде набора зарядов твердого топлива с различными абразивными частицами и помещен внутри корпуса. Сопла соплового блока расположены по образующей боковой поверхности соплового блока в количестве не менее трех в одном горизонтальном сечении. Углы полураствора входной β и выходной части сопла a находятся в пределах 50°<β<60°, 3°<α<6°, 2 ил.

Формула изобретения RU 2 057 910 C1

УСТРОЙСТВО ДЛЯ ПЕРФОРАЦИИ СКВАЖИН, включающее источник рабочего тока, корпус и сопловый блок, отличающееся тем, что источник рабочего тела выполнен в виде набора зарядов твердого топлива с различными абразивными частицами и размещен внутри корпуса, а сопла соплового блока расположены на образующей боковой поверхности соплового блока в количестве не менее трех в одном горизонтальном сечении, причем углы полураствора входной α и выходной b частей сопла находятся в пределах 50°< β < 60°, 3°< α < 6°.

Документы, цитированные в отчете о поиске Патент 1996 года RU2057910C1

Ловля С.А
Престрелочно-взрывные работы в скважинах
М.: Недра, 1987, с.209.

RU 2 057 910 C1

Авторы

Абалтусов В.Е.

Полежаев Ю.В.

Михатулин Д.С.

Немова Т.Н.

Алексеенко Н.Н.

Зима В.П.

Рыбасова Н.Л.

Даты

1996-04-10Публикация

1993-09-09Подача