ДАТЧИК УЛЬТРАЗВУКОВОГО РАСХОДОМЕРА Российский патент 1996 года по МПК G01F1/66 

Описание патента на изобретение RU2062994C1

Изобретение относится к измерительной технике и может быть использовано для измерения расхода текучих сред.

Известен датчик ультразвукового расходомера, содержащий измерительный канал прямоугольного сечения, на одной стенке которого установлены два ультразвуковых преобразователя /1/.

Ближайшим аналогом изобретения является датчик ультразвукового расходомера содержащий установленные на боковой стенке измерительной трубы на заданном расстоянии друг от друга два ультразвуковых преобразователя, а также отражатели, установленные на противоположной стенке /2/.

Недостатком этого устройства является то, что ультразвуковой сигнал при распространении от излучателя к приемнику искажается паразитным сигналом, распространяющимся по V-образному пути.

Техническим результатом от использования изобретения является эффективное подавление V-образного распространения сигнала.

Это достигается тем, что отражатель установлен симметрично относительно ультразвуковых преобразователей между ними и выполнен в виде ступени причем высота ступени выбрана из условия обеспечения гасящей интерференции сигналов, отраженных верхней и нижней плоскостью ступени, а также тем, что по меньшей мере, одна из отражающих плоскостей ступени разделена на отдельные плоские части.

Устройство изображено на чертеже, где на фиг.1 показано расположение датчика на измерительном отрезке трубы -u сечение трубы по А-А(а);
на фиг.2,а,б выполнение отражателя в виде одной отражающей ступени;
на фиг.3,а,б выполнение отражателя с двумя поперечными отражающими ступенями;
на фиг. 4,а,б выполнение отражателя с двумя продольными отражающими поверхностями;
на фиг.5,а,б выполнение отражателя с одной продольной отражающей ступенью.

Датчик содержит размещенные на измерительной трубе 1, стенки которой 2,3 и 4,5 образуют прямоугольное проходное сечение Не два ультразвуковых преобразователя 6,7, установленные на заданном расстоянии Lm на одной из стенок трубы, отражатель 8, установленный симметрично относительно ультразвуковых преобразователей на противоположной стенке трубы. Отражатель 8 выполнен в виде одной или нескольких отражающих плоскостей X и У, образующих ступени, причем высота ступени выбирается из условия обеспечения гасящей интерференции сигналов, отраженных плоскостями ступени. Ультразвуковые преобразователи 6, 7 выполнены с возможностью работы в обратимом режиме и их приемоизлучающие поверхности 9,10 расположены под углом α к стенке трубы.

Поскольку диаграмма направленности ультразвукового преобразователя в режиме излучения не может быть бесконечно острой, наряду с сигналом, излученным под углом a и многократно отраженным по пути следования от излучателя к приемнику (W образный путь), присутствует сигнал. излученный под углом b, который попадает на приемник после однократного отражения (V -образный путь). Этот сигнал является паразитным по отношению к сигналу, распространяющемуся по W образному пути.

В основе изобретения лежит идея достигнуть с помощью интерференции в значительной степени полного гашения акустического сигнала V образного пути. Согласно изобретения в соответствующем месте отражения V образного пути делается вставка внутри трубы на стенке трубы, которая делит соответствующую отражающую плоскость внутренней стенки трубы на по меньшей мере две части или половины.

При этом собственно стенка трубы образует одну половину У, а другая половина Х является возвышающейся на величину Д плоскостью ступени внутренней стенки трубы. Можно предусматривать и соответствующие углубление, которое, однако, является более сложным в изготовлении. Фиг.2,3,4 и 5 показывают примеры такого разделения. Из этих изображений можно понять значение размера Д без необходимости дальнейших пояснений. На фиг.2-5 показана часть V - образного пути 11. Для плоских частей X и У получаются после отражения два параллельных пути ультразвука 11а и 11в. Толщина Д выбирается в зависимости от угла b так, чтобы оба эти пути были взаимно гасимыми за счет интерференции. Предпочтительно используется интерференция первого порядка.

Части X и/или У могут быть еще раз разделены по плоскости как это, например, показано на фиг.3 и 5. Таким образом, можно достигнуть еще более высокой степени надежного гашения. В любом случае справедливо правило, чтобы интенсивность отражения от части X была равна интенсивности отражения от части У, причем следует учитывать это внутри всей отражающей плоскости имеет место неравномерное распределение интенсивности.

При длинах звуковых волн лямбда приблизительно равных 2 мм, что соответствует частоте 170 кГц в воздухе, высоту степени выбирают Дк ≅ I мм при обычных величинах угла b. Для потока вставка с такими размерами внутри трубы не является значительной и приводит к незначительному нарушению потока. Выбор размеров основан на следующем пояснении.

Интерференция звуковых волн.

Справедливо:c = f•λ
где: с скорость звука в соответствующей среде;
f частота преобразователя
l длина волны в среде.

Две звуковые волны одинакового направления распространения, их частоты и амплитуды гасят друг друга, если они имеют разность хода

При вертикальном угле падения эта разность хода δ достигается для расстояния

обеих отражательных плоскостей, а именно, при к 0 для Д = λ/4. С учетом появляющегося в измерительной трубе угла падения β сигнала V образного пути необходимая для гашения высота Д вычисляется из

или с учетом различных сред может быть представлена как

Это явление интерференции используется для подавления V сигнала.

Для этого направление распространения для всех участвующих звуковых волн может рассматриваться примерно постоянным. Для упрощения в этом рассмотрении была учтена только средняя частота резонанса преобразователя.

Вследствие большого скачка импенданса на границе воздух твердый материал для звука частичное отражение на верхней и нижней поверхности тонкого слоя невозможно /как, например, в оптике тонких пленок/. Фронт волны поэтому не отражается от снабженной однородным покрытием поверхности, а поверхность отражения разделяется на две одинаковые области, из которых одна плоскость смещена относительно другой /фиг. 2/ и тем самым создается разность хода. Скачок фаз λ/2 появляется только при обеих частях и поэтому может не учитываться. Разность хода в направлении к приемному преобразователю ведет к взаимному гашению отраженных от обеих частей плоскости составляющих V - сигнала, и тем самым к его более эффективному подавлению.

Изобретение поясняется на конкретном примере.

Типичными значениями для применяемой здесь измерительной трубы являются: Lm 174 мм, r 7 мм и h 30 мм, а также α1= 35°;; таким образом получается значение для β, равное 21,4o. Скорость звука в воздухе составляет при комнатной температуре с 340 м/сек и в метане с 440 м/сек. Для преобразователя с радиусом r 7 мм на практике устанавливается радиальная резонансная частота f, примерно равная 170 кГц. Таким образом, для гашения сигнала V образного пути звука возможные возвышения Дк в воздухе составляют Д0 0,182 мм, Д1 0,546мм, Д2 0,912 мм, Д3 1,277 мм и в метане Д0 0,236 мм, Д1= 0,708 мм, Д2= 1,180 мм, Д3 1,652 мм. Для хорошего подавления в обеих средах а также всех скоростей звука в промежуточной области можно выбирать, например, Д примерно равным 0,2 мм или Д примерно равным 0,6 мм. В зависимости от требований высота Д может также быть точно согласована с определенной средой. Названные значения Д означают только незначительную вставку на пути потока. Для ультразвукового преобразователя с r 10,5 мм и f порядка 130 кГц b 23,9o. Тeм самым, согласно уравнению /I/, в воздухе Д0 0,265 мм, Д1 0,796 мм, Д2 1,326 мм, а в метане Д0 0,343 мм, Д1= 1,03 мм, Д2 1,716 мм так, что для хорошего подавления в обеих средах и в промежуточной области должны выбираться, например, Д порядка 0,3 мм или Д порядка 0,9 мм.

Измерительный пример: при β = 21,4°C и r 7 мм, т.е. для преобразователя с f порядка 170 кГц получается длина плоскости соударения 39 мм. С высотой ступени Д 0,6 мм при длине 15-20 мм были достигнуты отличные результаты. Cигнал V образного пути может быть ослаблен с помощью применения пластинки 3λ/4(Д = 0,6 мм) примерно на 18 дБ. ЫЫЫ2 ЫЫЫ4

Похожие патенты RU2062994C1

название год авторы номер документа
УЛЬТРАЗВУКОВОЙ ПРОТОЧНЫЙ ДАТЧИК ДЛЯ ПРИМЕНЕНИЯ В ТЕКУЧЕЙ СРЕДЕ 2010
  • Тобиас Ланг
RU2548587C2
ИНТЕГРАЛЬНО-ОПТИЧЕСКОЕ ОТРАЖАТЕЛЬНОЕ ПРИЕМОПЕРЕДАЮЩЕЕ УСТРОЙСТВО 1988
  • Штефан Киндт[De]
RU2043002C1
УСТРОЙСТВО ДЛЯ ПОДАВЛЕНИЯ УЛЬТРАЗВУКОВЫХ АКУСТИЧЕСКИХ ШУМОВ В ГАЗОПРОВОДАХ 2023
  • Сучков Дмитрий Сергеевич
  • Сучков Сергей Германович
  • Николаевцев Виктор Андреевич
RU2812696C1
Способ акустической профилеметрии скважин 1980
  • Ишмухаметов Алик Усманович
  • Жувагин Иван Герасимович
  • Красильников Александр Андреевич
  • Стрелков Вячеслав Иванович
  • Гумеров Радиф Галиевич
  • Шершнев Валерий Васильевич
  • Шутемов Аркадий Иванович
SU987548A1
ОПРАШИВАЕМЫЙ ПО РАДИО ПАССИВНЫЙ ДАТЧИК НА ПОВЕРХНОСТНЫХ АКУСТИЧЕСКИХ ВОЛНАХ 1992
  • Леонард Райндль[De]
  • Фолькхард Мюллер[De]
  • Клеменс Руппель[De]
  • Вольф-Экхарт Бульст[De]
  • Франц Зайферт[At]
RU2105993C1
СПОСОБ УЛЬТРАЗВУКОВОГО КОНТРОЛЯ МАТЕРИАЛОВ И ИЗДЕЛИЙ 2022
  • Мартыненко Анатолий Васильевич
RU2793565C1
Внутритрубный ультразвуковой дефектоскоп 2016
  • Ревель-Муроз Павел Александрович
  • Глинкин Дмитрий Юрьевич
  • Лексашов Олег Борисович
  • Шерашов Сергей Алексеевич
RU2626744C1
УЛЬТРАЗВУКОВОЙ РАСХОДОМЕР 2007
  • Ван-Клостер Йереон Мартин
  • Хугендорн Корнелиус Йоханнес
RU2487320C2
СПОСОБ И УСТРОЙСТВО ДЛЯ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ МАТЕРИАЛА ИСПЫТЫВАЕМОГО ОБЪЕКТА С ПОМОЩЬЮ УЛЬТРАЗВУКОВЫХ ВОЛН 2008
  • Боэм Райнер
  • Гольдаммер Маттиас
  • Хайнрих Вернер
RU2423690C1
УЛЬТРАЗВУКОВОЙ ПЬЕЗОЭЛЕКТРИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ 2001
  • Адоньев В.Г.
  • Романов Ю.И.
  • Свильпов Д.Ю.
RU2188415C1

Иллюстрации к изобретению RU 2 062 994 C1

Реферат патента 1996 года ДАТЧИК УЛЬТРАЗВУКОВОГО РАСХОДОМЕРА

Использование: в измерительной технике, для измерения расхода текучих сред. Сущность изобретения: датчик содержит два ультразвуковых преобразователя, установленных на одной стенке измерительной трубы на расстоянии Lm так, что их приемо-излучающие поверхности образуют угол альфа со стенкой трубы. Стенки трубы образуют прямоугольное проходное сечение НВ. На противоположной от излучателей стенке трубы между ними установлен отражатель в виде одной или нескольких отражающих плоскостей X и Y, образующих ступени. Высота ступени выбирается из условия обеспечения гасящей интерференции сигналов, отраженных от ее плоскостей. 1 з.п. ф-лы, 5 ил.

Формула изобретения RU 2 062 994 C1

1. Датчик ультразвукового расходомера, содержащий установленные на боковой стенке измерительной трубы на заданном расстоянии два ультразвуковых преобразователя, а также отражатель, установленный на противоположной боковой стенке измерительной трубы, отличающийся тем, что отражатель установлен симметрично относительно ультразвуковых преобразователей между ними и выполнен в виде ступени, причем высота ступени выбрана из условий обеспечения гасящей интерференции сигналов, отраженных верхней и нижней плоскостями ступени. 2. Датчик по п.1, отличающийся тем, что по меньшей мере одна из отражающих плоскостей ступени разделена на отдельные плоские части.

Документы, цитированные в отчете о поиске Патент 1996 года RU2062994C1

Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Siemens Forschungs - und Entwick - lundsberichte, Band 15, N 3, 1986, Seiten 126-134, fig
Походная разборная печь для варки пищи и печения хлеба 1920
  • Богач Б.И.
SU11A1
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
АППЛИКАТОР 1998
  • Бугров С.Л.
  • Сокольский В.А.
  • Гуткина О.Н.
RU2146122C1
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1

RU 2 062 994 C1

Авторы

Винфрид Руссвурм[De]

Даты

1996-06-27Публикация

1990-12-13Подача