СПОСОБ ОПРЕДЕЛЕНИЯ СТЕПЕНИ КРИСТАЛЛИЧНОСТИ МАТЕРИАЛОВ Российский патент 1996 года по МПК G01N33/44 G01N25/02 

Описание патента на изобретение RU2064678C1

Изобретение относится к исследованию физических и структурных свойств композиционных материалов полимеров и сплавов и может быть использовано для определения структуры стеклообразных и композиционных полимерных материалов.

Изобретение предназначено для определения степени кристалличности полимерных материалов неразрушающим методом.

Известен способ определения степени отверждения материалов экстракцией, основанный на определении массы неотвержденной смолы, растворившейся в ацетоне при экстрагировании в приборе Сокслета.

Недостаток известного способа [1] состоит в том, что используется разрушающий метод контроля, продолжительность которого достигает 10 час.

Наиболее близким к предлагаемому техническому решению является cпособ динамической калориметрии [2] состоящий в измерении теплового потока (путем регистрации температурного перепада во многих точках образца) при предположении, что весь испытуемый образец, первоначально незакристаллизованный, принял вид кристаллической структуры по всему объему.

Недостаток известного способа заключается в:
1) длительности измерительного процесса и процесса расшифровки данных;
2) низкой точности способа прототипа, достигающей значения более 10%
3) сложности аппаратурного (калориметрического по природе) оформления.

Цель настоящего изобретения заключается в ускорении процесса определения степени кристаллизации и повышения его точности.

Для достижения поставленной цели, в предложенном способе определения степени кристалличности композиционных полимерных материалов нагрев образца проводят до образования кристаллической фазы, при этом измеряют скорости теплового расширения образца при максимальном значении температуры и при минимальном ее значении в интервале температур, соответствующих образованию кристаллической фазы, а степень кристалличности определяют из отношения указанных скоростей линейного расширения образца
h VTmax/VTmin
где VTmax скорость теплового расширения образца при максимальном значении температуры
VTmin скорость теплового расширения образца при минимальном значении температуры в интервале температур, соответствующих образованию кристаллической фазы.

Предложенный способ поясняется чертежами.

На фиг. 1 схема устройства для определения малых изменений длины образцов.

На фиг. 2 вид дилатограммы, позволяющий получить ход изменения скорости теплового расширения при экстремальных значениях температур и хода изменения температуры образца при постоянной подачи энергии для его нагрева.

Способ реализован с помощью устройства (дилатометра), состоящего из термостата 1, держателей 2, в котором между двумя упорами неподвижным 3 и подвижным 4 помещают испытуемый образец 5. Подвижный упор 4 и держатель 2 образца оснащены рычажно-оптическими датчиками малых перемещений, фиксирующими изменение образца.

Схема не усложнена изображением электронных коммуникаций и элементов подогрева образца, измерения электрических сигналов, преобразования их в движущееся световое пятно и других блоков, имеющих традиционный характер в подобных измерениях.

Определение степени кристалличности полимера производиться следующим образом.

Через образец испытуемого материала, помещаемого в термостат 1 дилатометра, между упорами 3 и 4 пропускают электрический ток. Удерживаемый в упорах образец нагревают, который при этом увеличиваясь в размерах, перемещает подвижный упор 4 дилатометра.

Вначале, с возрастанием температуры, удлинение опытного образца незначительно, в связи с упорядочением его структуры, затем с повышением температуры, пластичность структуры композиционного полимерного образца также повышается и скорость расширения его увеличивается. После наступает резкое временное снижение температуры при протекании тока неизменной величины через образец. Тепловое расширение образца продолжается, но с меньшей скоростью. Падение температуры в образце обусловлено образованием зон кристаллов отдельных компонентов композиционного полимера, что сопровождается поглощением тепловой энергии. Затем температура образца вновь повышается после образования указанных кристаллов, повышается и скорость линейного расширения образца.

Для определения степени кристалличности композиционных полимерных материалов нагрев образца проводят до образования кристаллической фазы, при этом измеряют скорости теплового расширения образца при максимальном значении температуры и при минимальном ее значении в интервале температур, соответствующих образованию кристаллической фазы, а степень кристалличности определяют из отношения указанных скоростей линейного расширения образца
h VTmax/Tmin
где VTmax скорость теплового расширения образца при максимальном значении температуры,
VTmin скорость теплового расширения образца при минимальном значении температуры в интервале температур, соответствующих образованию кристаллической фазы,
Удобство определения степени кристаллизации следует из того обстоятельства, что кинетические характеристики испытуемого образца рассчитываются непосредственно по зачерченным самописцем кривым кристаллизации (фиг.2).

Монохроматический свет подается на зеркальца, далее многошлейфовый осциллограф обеспечивает непрерывную фоторегистрацию сразу нескольких переменных во времени величин.

Зоны перегиба на кривых 1 и 2 являются следствиями процессов кристаллизации и упорядочения структуры в образце, так как температура образца вначале повышается, а затем (при непрекращающемся удлинении) резко падает до некоторого минимума, далее вновь возрастает.

Точность замера всех кинетических характеристик на дилатограмме не ниже 1% 2% а точность величин электрических не ниже 0,1% Относительная погрешность замера перемещений не превышает 0,01% Поэтому общая точность метода определения степени кристалличности составляет 4% 5%
Измеренная степень кристалличности для таких полимеров, как полиэтилентерефталат (ПЭТФ), полигексаметиленадипамид (ПГМАА), полигексаметиленсебацианамид (ПГМСЦА), полиэтиленсебациамат (ПЭСЦ) менялась при подборе для исследования различных образцов в пределах от 0,1 до 0,9.

Использование данного технического решения позволит повысить эффективность процесса определения степени кристалличности; повысить точность измерения, упростить аппаратурное оснащение и сократить расшифровку полученных данных.

Похожие патенты RU2064678C1

название год авторы номер документа
СВЕТОСИГНАЛЬНЫЙ ОГОНЬ 1993
  • Скворцов Б.В.
  • Сысун В.В.
RU2046254C1
УСТРОЙСТВО ДЛЯ ПОСАДКИ ЛЕТАТЕЛЬНОГО АППАРАТА НА КОРАБЛЬ 1990
  • Бибаев Е.Ю.
RU2046072C1
АЭРОДРОМНЫЙ УГЛУБЛЕННЫЙ ОГОНЬ 1994
  • Адининсков Е.А.
  • Жажело С.Ф.
  • Скворцов Б.В.
  • Сысун В.В.
RU2054597C1
ЗАЩИЩЕННЫЙ СВЕТИЛЬНИК 1995
  • Коротеев Ю.Я.
  • Милохин Н.Н.
  • Сысун В.В.
RU2089780C1
ИНДУКЦИОННАЯ КАНАЛЬНАЯ РАЗДАТОЧНАЯ ПЕЧЬ 1988
  • Ковалевский И.И.
  • Ковалевский А.И.
RU2007682C1
ПОГРУЖНОЕ ПРИСПОСОБЛЕНИЕ И.И.КОВАЛЕВСКОГО ДЛЯ ПЕРЕКАЧКИ ЖИДКОГО МЕТАЛЛА ИЗ ВАНН ИНДУКЦИОННЫХ КАНАЛЬНЫХ ПЕЧЕЙ 1987
  • Ковалевский И.И.
RU2011941C1
ОСВЕТИТЕЛЬНОЕ УСТРОЙСТВО 1997
  • Басов Ю.Г.
  • Леонов С.Н.
  • Сысун В.В.
RU2123633C1
ПРОЖЕКТОР 1983
  • Антонов Игорь Владимирович
  • Скворцов Борис Васильевич
SU1839802A1
СПОСОБ ДЕГАЗАЦИИ МАСЛА 1997
  • Блохин В.И.
  • Константинов В.Е.
  • Курочкин А.Н.
RU2124918C1
СПОСОБ ОПРЕДЕЛЕНИЯ СТЕПЕНИ КРИСТАЛЛИЧНОСТИ СОСТАВОВ НА ОСНОВЕ ДИФЕНИЛАМИНА 2013
  • Альмашев Ринат Олегович
  • Романько Надежда Андреевна
  • Енейкина Татьяна Александровна
  • Кипрова Анна Викторовна
  • Хотулёва Екатерина Валерьевна
  • Таразова Эльвира Наилевна
  • Гатина Роза Фатыховна
  • Михайлов Юрий Михайлович
RU2546675C2

Иллюстрации к изобретению RU 2 064 678 C1

Реферат патента 1996 года СПОСОБ ОПРЕДЕЛЕНИЯ СТЕПЕНИ КРИСТАЛЛИЧНОСТИ МАТЕРИАЛОВ

Изобретение относится к исследованию физических и структурных свойств композиционных материалов полимеров и сплавов и может быть использовано для определения структуры стеклообразных и композиционных полимерных материалов. Способ включает нагрев образца до образования кристаллической фазы, при этом измеряют скорости теплового расширения образца при максимальном значении температуры и при минимальном ее значении в интервале температур, соответствующих образованию кристаллической фазы, а степень кристалличности определяют из отношения указанных скоростей теплового расширения образца. 2 ил.

Формула изобретения RU 2 064 678 C1

Способ определения степени кристалличности материалов, включающий нагрев образца из исследуемого материала и измерение его геометрических размеров с последующим вычислением искомой характеристики, отличающийся тем, что, с целью повышения точности определения степени кристалличности композиционных полимерных материалов, определяют скорость термического расширения образца при двух значениях температур, соответствующих начальной и конечной стадиям образования кристаллической фазы, а искомую характеристику определяют из отношения указанных скоростей термического расширения образца.

Документы, цитированные в отчете о поиске Патент 1996 года RU2064678C1

Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Автоматический огнетушитель 0
  • Александров И.Я.
SU92A1
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Годовский Ю.К
Теплофизические методы исследования полимеров
- М.: Химия, 1976, с
Способ гальванического снятия позолоты с серебряных изделий без заметного изменения их формы 1923
  • Бердников М.И.
SU12A1

RU 2 064 678 C1

Авторы

Лобачев К.И.

Баталов В.С.

Даты

1996-07-27Публикация

1990-03-30Подача