Заявленный способ относится к области охраны окружающей среды. Наиболее эффективно он может быть использован в технологии обезвреживания радиоактивных и токсичных отходов (РАТО) путем их остекловывания.
К настоящему времени наиболее широко распространенными методами нагрева при остекловывании радиоактивных и токсичных отходов являются нагрев в печах сопротивления, индукционных нагрев, а также нагрев путем пропускания переменного тока через расплав (электродный нагрев).
Известен, например, способ остекловывания РАТО в тигле разового пользования, помещаемом в семизонную печь сопротивления с нагревателями из карбида кремния /1/.
Однако использование печей сопротивления в качестве источника нагрева затрудняет сравнительно низкая теплопроводность расплавленной стекломассы /порядка 3 Вт/(м град)/, что делает невозможным равномерное распределение температуры в большом объеме расплава, а значит и ухудшает качество получаемого продукта.
Другим известным способом остекловывания радиоактивных и токсичных отходов является способ остекловывания в керамических плавителях, в которых энергия для плавления стекломассы подводится при пропускании переменного тока между электродами через расплавленное стекло /2/.
Недостатком этого способа является возможное вспенивание расплава, приводящее к плохому провару стекломассы, ухудшению качества получаемого стекла и сопутствующая этому повышенная летучесть радионуклидов.
Наиболее близким по технической сущности к заявляемому объекту является способ остекловывания РАТО, включающий загрузку стеклообразующей шихты в тигель индукционной печи, введение в шихту электропроводящего материала (кусков графита), обеспечивающего создание стартового расплава, введение в стартовый расплав РАТО вместе со стеклообразующей шихтой гомогенизацию получаемого расплава и его охлаждение /3/.
Недостатками данного способа являются: невысокая скорость процесса остекловывания; аварийноопасность процесса; повышенный унос радионуклидов.
Преимуществами заявляемого способа являются увеличение скорости остекловывания РАТО, обеспечение аварийнобезопасности процесса и снижение степени уноса радионуклидов.
Указанные преимущества достигаются за счет того, что в заявляемом способе, включающем все операции прототипа, в качестве электропроводящего материала используют суспензию закиси-окиси железа (Fe3O4 - магнетита) в воде при содержании магнетита 40-85% мас. в количестве, обеспечивающем покрытие части поверхности исходной стеклообразующей шихты концентрическим пятном при условии:
0,5 Дп≅Дм≅0,7Дп,
где Дп внутренний диаметр тигля, а Дм средний диаметр пятна.
В заявляемом способе магнетитовый шлам быстро обезвоживается и подвергается уплотнению, что приводит к увеличению скорости теплопередачи, а значит, и к ускорению формирования стартового расплава (в среднем в 1,5-2 раза по сравнению с прототипом). При дальнейшем расплавлении шихты закись-окись железа растворяется в стартовом расплаве, повышая его электропроводность и ускоряя дальнейший процесс остекловывания РАТО. При этом наличие слоя магнетитового шлама на поверхности расплава, исключение возможности локального перегрева, уменьшение времени существования открытой поверхности стартового расплава за счет сокращения продолжительности стартового процесса и отсутствие необходимости подачи окислителя приводят к уменьшению уноса радионуклидов.
Снижение аварийноопасности процесса достигается за счет того, что благодаря своим ферромагнитным свойствам магнетитовый шлам локализуется в месте наибольшей концентрации энергии электромагнитного поля (в центре плавителя) и исключается его контакт со стенками плавителя, возможность пробоя и разрушения тигля.
При Дм, меньшем 0,5Дп, количества шлама недостаточно для эффективного нагрева; при Дм, большем 0,7Дп, возникает опасность случайного контакта шлама со стенками плавителя.
Заявляемый способ реализуется следующим образом.
В тигель загружают исходную порцию стеклообразующей шихты состава: 10 мас. В2O3, 70 мас. SiO2, 20 мас. Al2O3 в таком количестве, чтобы при расплавлении ее расплав занимал объем, равный 10% объема тигля, после чего на поверхность исходной порции стеклообраующей шихты наливают водную суспензию магнетита в количестве 10% от объема расплава исходной порции стеклообразующей шихты (объем водной суспензии магнетита может колебаться в пределах от 8 до 15% от объема расплава. При этом Дм будет удовлетворять требованию 0,5Дп≅Дм≅0,7Дп). Концентрация закиси-окиси железа в водной суспензии магнетита составляет 65 мас. Затем от источника электроэнергии производят разогрев смеси до ее расплавления. После этого в образовавшийся стартовый расплав порциями вводят смесь РАТО вместе со стеклообразующей шихтой в соотношении 30 мас. РАТО и 70 мас. стеклообразующей шихты (вышеуказанное соотношение может колебаться в пределах 20-40 мас. РАТО и 60-80 мас. стеклообразующей шихты). После расплавления смеси ее выдерживают в расплавленном состоянии до полной гомогенизации за счет самоперемешивания расплава пузырьками отходящих газов. Гомогенизированный расплав сливают, охлаждают и направляют на захоронение.
По сравнению с выбранным прототипом заявляемый способ позволяет сократить продолжительность создания стартового расплава в 1,5-2 раза, уменьшить унос летучих форм радионуклидов в 3-10 раз и предотвратить аварийноопасность процесса остекловывания РАТО.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ОСТЕКЛОВЫВАНИЯ РАДИОАКТИВНЫХ И ТОКСИЧНЫХ ОТХОДОВ В ПЛАВИТЕЛЕ | 1992 |
|
RU2035073C1 |
СПОСОБ СОЗДАНИЯ СТАРТОВОГО РАСПЛАВА В ИНДУКЦИОННЫХ ПЕЧАХ С ХОЛОДНЫМ ТИГЛЕМ ПРИ ОСТЕКЛОВЫВАНИИ РАДИОАКТИВНЫХ ОТХОДОВ | 1995 |
|
RU2091875C1 |
СПОСОБ ИММОБИЛИЗАЦИИ РАДИОАКТИВНЫХ И ТОКСИЧНЫХ ОТХОДОВ | 2000 |
|
RU2187158C1 |
СПОСОБ ПЕРЕРАБОТКИ ТВЕРДЫХ РАДИОАКТИВНЫХ И ТОКСИЧНЫХ ОТХОДОВ | 1995 |
|
RU2084028C1 |
СПОСОБ ОСТЕКЛОВЫВАНИЯ РАДИОАКТИВНЫХ ОТХОДОВ В ОХЛАЖДАЕМОМ МЕТАЛЛИЧЕСКОМ ИНДУКЦИОННОМ ПЛАВИТЕЛЕ | 1999 |
|
RU2168226C1 |
СПОСОБ ОСТЕКЛОВЫВАНИЯ РАДИОАКТИВНЫХ ОТХОДОВ В ОХЛАЖДАЕМОМ МЕТАЛЛИЧЕСКОМ ИНДУКЦИОННОМ ПЛАВИТЕЛЕ | 1999 |
|
RU2168225C1 |
СПОСОБ ОСТЕКЛОВЫВАНИЯ СУЛЬФАТСОДЕРЖАЩИХ РАДИОАКТИВНЫХ ОТХОДОВ | 1993 |
|
RU2065215C1 |
УСТРОЙСТВО ДЛЯ ПЛАВЛЕНИЯ РАДИОАКТИВНЫХ ОТХОДОВ | 1998 |
|
RU2132097C1 |
УСТАНОВКА С ОХЛАЖДАЕМЫМ ИНДУКЦИОННЫМ ПЛАВИТЕЛЕМ ДЛЯ ОСТЕКЛОВЫВАНИЯ ЖИДКИХ РАДИОАКТИВНЫХ ОТХОДОВ | 1998 |
|
RU2152653C1 |
СПОСОБ ПЕРЕРАБОТКИ РАДИОАКТИВНЫХ И ТОКСИЧНЫХ ДОННЫХ ОТЛОЖЕНИЙ | 2001 |
|
RU2195727C1 |
Использование: остекловывание радиоактивных и токсичных отходов. Сущность изобретения: в тигель индукционной печи загружают стеклообразующую шифту и вводят в шихту электропроводящий материал - водную суспензию закиси-окиси железа с концентрацией закиси-окиси железа 40-85 масс.%. Суспензию вводят в центр поверхности шихты до образования пятна, размер которого удовлетворяет требованию: 0,5 Дпменьше или равно Дм меньше или равно 0,7 Дп, где Дп - внутренний диаметр тигля, Дм - средний диаметр пятна. Создают стартовый расплав, вводят в него отходы вместе со стеклообразующей шихтой, гомогенизируют расплав и охлаждают его до получения остеклованного блока. По способу обеспечивается высокая скорость остекловывания отходов, снижается степень износа радионуклидов.
Способ остекловывания радиоактивных и токсичных отходов в индукционной печи, заключающийся в том, что в тигель печи загружают стеклообразующую шихту, вводят в шихту электропроводящий материал, создают стартовый расплав, вводят в расплав радиоактивные и токсичные отходы вместе со стеклообразующей шихтой, гомогенизируют расплав и охлаждают его, отличающийся тем, что в качестве электропроводящего материала используют водную суспензию закиси-окиси железа с концентрацией закиси-окиси железа 40 85 мас. при этом суспензию вводят в центр поверхности шихты до образования пятна, размер которого удовлетворяет требованию
0,5Dп ≅ Dм ≅ 0,7Dп,
где Dп внутренний диаметр тигля;
Dм средний диаметр пятна.
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Никифоров А.С | |||
и др | |||
Обезвреживание жидких радиоактивных отходов, М.: Энергоатоимздат, 1985, с.92 | |||
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Никифоров А.С | |||
и др | |||
Обезвреживание жидких радиоактивных отходов, М.: Энергоатомиздат, 1985, с.94-96 | |||
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. | 1921 |
|
SU3A1 |
Лифанов Ф.А | |||
и др | |||
Индукционная тигельная печь для варки стекла | |||
Журнал "Стекло и керамика", 1991, N 7, с.10-11. |
Авторы
Даты
1996-08-10—Публикация
1992-08-12—Подача