Изобретение относится к области информационно-измерительной техники и может найти широкое применение в области измерения механических величин: усилий, масс, давлений и т.д.
 В последнее время большой интерес приобретают емкостные датчики механических величин, обладающие потенциально более высокой точностью, чем наиболее распространенные в настоящее время тензорезисторные преобразователи усилий [1]
 Достоинства емкостных датчиков обусловлены трехэлектродной конструкцией в схемах емкостных делителей напряжения, позволяющей за счет линеаризации характеристики работать при больших модуляциях зазора и обладающей высокой помехоустойчивостью, и работой с малыми зазорами, увеличивающими чувствительность при малых габаритах.
 Известны емкостные датчики силы, в которых на самом чувствительном упругом элементе размещен дифференциальный емкостный преобразователь [2]
 Недостатками их является конструктивная и схемотехническая сложность, вызванная дифференциальным принципом построения, требующая симметрии конструкции и идентичности обеих половин преобразователя.
Известен емкостный силоизмерительный преобразовательпрототип [3] который содержит подвижный и неподвижный электроды, формируемые методом напыления на изоляционную подложку из Al2O3 серебра. Подвижный металлический электрод соединен с неподвижным путем приваривания к стеклянному кольцу.
 Недостатками этого преобразователя являются:
 недоступная для широкого производителя сложность изготовления, вызванная спецтехнологиями,
 наличие хрупкого неметаллического упругого элемента стекла в силовой измерительной цепи,
 требования одинаковых температурных коэффициентов расширения стекла, алюминия и т.д.
отсутствие развязки между силовводом и заделкой упругого элемента в основании в силу недифференциальности конструкции.
Настоящий датчик силы конструктивно просто изготавливается обычными средствами механообработки. Он характеризуется мембранами, установленными соосно и взаимообращенно и выполненными по обе стороны мембраны с жесткими центральными втулками, к которым снаружи приложены измеряемые усилия, а внутри на них установлены изолированные электроды недифференциального преобразователя перемещения, причем электрод меньшего диаметра окружен охранным кольцом и соединен с инверсным входом операционного усилителя, а электрод большего диаметра соединен с выходом усилителя, который подключен к входу компаратора напряжения, выход которого через термозависимый делитель напряжения соединен с входом усилителя, причем термозависимый резистор усилителя введен в межмембранную полость.
На фиг. 1 схематически приведена конструкция и блок-схема электронного блока датчика силы.
Датчик содержит две идентичные мембраны 1 и 2 с двусторонними жесткими центральными втулками 3 и 4. Во втулке 4 снаружи выполнено углубление под шарик 5, на который давит шток. Втулка 3 установлена в проточке основания 6. С втулками 3 и 4 через слой изоляционного клея 7 соединены электроды 8 и 9. Электрод 8 окружен охранным кольцом 10. В центрах втулок 3 и 4 соосно выполнены опорные ограничители хода упоры 11. Во внутренней полости мембран установлен терморезистор 12. Электрод 8 соединен с входом операционного усилителя 13, электрод 9 с его выходом, который соединен с входом операционного усилителя 14. Выход операционного усилителя 14 через делитель напряжения (R4, R5, R6) соединен с входом усилителя 13. Для термокомпенсации в плечо делителя включен терморезистор 12, расположенный в межмембранной полости. Мембраны 1 и 2 жестко соединены по периферии сваркой технологических "усов".
Измеряемое усилие Fx штока (поршня) через шарик 5 воздействует на мембрану 1, а реакция опоры основания в 6 Fоп Fx воздействует на мембрану 2. Под действием усилий Fx мембраны прогибаются на Δδ = Fx/W, где W жесткость мембраны, при этом зазор между мембранами уменьшается δx= δo-2Δδ,. Емкость между электродами увеличивается, т.е.

 Емкость Cx включена в частотозависимую цепь обратной связи операционного усилителя 13 (ОУ), в силу чего паразитные шунтирующие емкости C
 где Ko постоянная, определяемая резисторами электронной схемы (рис.1) и равная 
, а
 значение емкости между электродами 8 и 9 при отсутствии измеряемой силы.
 Таким образом, величина 
 характеризует начальную частоту датчика, а величина 
 его чувствительность.
Включение изолированных от мембран электродов 8 и 9 соответственно к инверсному входу и выходу ОУ обеспечивает линейный закон преобразования измеряемого усилия Fx в выходную частоту fx. Линейная зависимость fx от Fx обеспечивается независимо от начального δo и текущего δx значения зазора, что позволяет выбрать предел измерения силы Fxном таким, чтобы 2Δδ ≈ δo, когда прогиб мембран достигает практически значения начального зазора.
Для предотвращения замыкания электродов и их механического повреждения при значениях измеряемой силы, превышающей Fxном, в конструкции датчика предусмотрены упоры 11, делающие невозможным прогиб мембран больше величины 2Δδmax.
Уравнение преобразования (1) справедливо лишь для плоского конденсатора, когда r/δo_→ ∞, где r радиус электрода.
При δo 0,1 0,6 мм и r ≅ 30 мм сказывается шунтирующее действие кривой емкости Ск, которая изменяется в существенно меньшей степени, чем Cx при воздействии силы Fx и вносит нелинейность в уравнение преобразования (31).
 Поскольку
 уравнение преобразования
 становится нелинейным, причем погрешность линейности составляет
 Для снижения погрешности линейности до 0,5% при Δδ/δo ≈ 0,8 краевая емкость должна быть снижена до уровня, необходимого из соотношения
 Cк/Cxo ≅ 0,01 (5)
 Линеаризация реального уравнения преобразования [3] достигается выполнением электрода 9 большим электрода 8 на величину
 Δr = rэ9-rэ8= (4÷5)δo  (6)
 где rэ8 и rэ9 соответственно радиусы электродов 8 и 9.
Кроме того, меньший из электродов снабжен защитным (охранным) кольцом 10, которое электрически соединено с корпусом датчика и, таким образом, является эквипотенциальным по отношению к охраняемому электроду 8.
 Отношение 
 характеризует кратность изменения проходной емкости между электродами в диапазоне измеряемых усилий от 0 до Fxном. В макетах емкостных датчиков силы на пределы до 1 10 кН удалось реализовать пятикратное изменение емкости от 20 до 100 пФ при изменении зазора от 0,6 до 0,12 мм.
 Дальнейшему увеличению кратности изменения емкости препятствуют технологические допуски на толщины мембран и величину начального зазора, преодолеть которые традиционными способами обработки и соединения деталей 1, 2, 8, 9 не удалось. Однако достигаемое значение глубины модуляции 
 на порядок выше ее в классических дифференциальных конструкциях емкостных датчиков (М ≈ 5 8%).
| название | год | авторы | номер документа | 
|---|---|---|---|
| ДАТЧИК УСИЛИЯ | 2001 | 
									
  | 
                RU2193762C1 | 
| УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ДАВЛЕНИЯ | 1990 | 
									
  | 
                RU2014581C1 | 
| Емкостный дифманометр | 1991 | 
									
  | 
                SU1796934A1 | 
| ТЕНЗОМЕТР | 2011 | 
									
  | 
                RU2483277C1 | 
| СПОСОБ ОПРЕДЕЛЕНИЯ ПОВЕРХНОСТНОГО ИЗГИБА ЗОН ПОЛУПРОВОДНИКА ψ В МДП-СТРУКТУРЕ | 1997 | 
									
  | 
                RU2117956C1 | 
| ДВУХТАКТНЫЙ УСИЛИТЕЛЬ ТОКА | 1996 | 
									
  | 
                RU2115225C1 | 
| ОЗОНАТОР | 1995 | 
									
  | 
                RU2088519C1 | 
| ИНТЕГРАЛЬНЫЙ ДАТЧИК АБСОЛЮТНОГО ДАВЛЕНИЯ | 2011 | 
									
  | 
                RU2470273C1 | 
| УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ МАГНИТНОГО ПОЛЯ | 1990 | 
									
  | 
                RU2033624C1 | 
| СПОСОБ КОНТРОЛЯ ХИМИЧЕСКОГО И ФАЗОВОГО СОСТАВА МЕТАЛЛОВ И СПЛАВОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1994 | 
									
  | 
                RU2085923C1 | 
Сущность изобретения: датчик содержит две жестко соединенные по периферии одинаковые мембраны 1 и 2 с двухсторонними жесткими центральными втулками 3 и 4. Втулка 3 жестко установлена в проточке основания 6. Внутри мембранной полости жестко связаны с втулками изолированные от них электроды 8 и 9 разных диаметров емкостного преобразователя перемещения. Электрод 8 меньшего диаметра подключен к входу, а электрод 9 большего диаметра - к выходу операционного усилителя 13, выход которого соединен с входом компаратора 14, который через термозависимый делитель напряжения связан с инверсным входом операционного усилителя 13. Термозависимый резистор 12 размещен во внутренней полости мембран 1 и 2. С внутренней стороны втулок 3 и 4 соосно в центре установлены опорные ограничители хода 11. 3 з.п. ф-лы, 1 ил.
              
| Артемов В.М., Кудряшов Э.А., Левшина Е.С., Моисейченко В.С | |||
| Пути совершенствования емкостных датчиков давления и ускорения | |||
| - ПСУ, 1989, N 9, с | |||
| Способ восстановления хромовой кислоты, в частности для получения хромовых квасцов | 1921 | 
											
  | 
										SU7A1 | 
| Емкостный динамометр | 1988 | 
											
  | 
										SU1627868A1 | 
| Печь для непрерывного получения сернистого натрия | 1921 | 
											
  | 
										SU1A1 | 
| Устройство для выделения одиночных импульсов | 1984 | 
											
  | 
										SU1213531A1 | 
| Печь для непрерывного получения сернистого натрия | 1921 | 
											
  | 
										SU1A1 | 
Авторы
Даты
1996-08-20—Публикация
1992-10-20—Подача