РАДИОФОТОЛЮМИНЕСЦЕНТНОЕ СТЕКЛО Российский патент 1996 года по МПК C03C3/17 

Описание патента на изобретение RU2070168C1

Изобретение относится к составам радиофотолюминесцентных (РФЛ) стекол, используемых для индивидуальной повседневной и аварийной дозиметрии гамма-рентгеновского излучения.

Составы дозиметрических стекол, относящиеся к указанной области применения, представлены в патентах США N 3930873, 4204976, Великобритании N 2001051, Франции N 2397643, Японии N 578055. Недостатком известных составов является их сильная склонность к кристаллизации, что предъявляет особые требования к технологии варки стекла и его выработки. Кроме того, в ряде составов содержится токсичный компонент окись берилия.

Наиболее близким к предложенному составу из числа дозиметрических стекол является стекло, содержащее, мас. P2O5 68,8 78,2; Na2O 4,1 21,6; СаО 0,1 8,8; Al2O3 4,5 14,6; Ag2O 0,05 5,0.

К неудовлетворительным свойствам данного стекла с точки зрения требований повседневного дозиметрического контроля относится большое время созревания радиофотолюминесценции (РФЛ) в области малых концентраций активатора (менее 0,5 мас. Ag2O), при концентрации Ag2O 0,5 мас. время созревания РФЛ составляет 4 ч, при концентрации Ag2O 0,05 мас. 4 сут, тогда как при концентрации Ag2O 1 мас. оно составляет 2 ч. Из приведенных выше дозиметрических характеристик прототипа следует, что для задач индивидуальной повседневной дозиметрии представляет интерес состав прототипа с концентрацией активатора 1 мас.

Задачей изобретения является создание состава радиофотолюминесцентного стекла с низким содержанием активатора (окись серебра) при условии получения дозиметрических характеристик (доводовая, начальная люминесценция необлученного стекла и время созревания радиофотолюминесценции) лучше, чем у прототипа.

Поставленная задача достигается тем, что стекло должно состоять из P2O5, Na2O, CaO, Al2O3 и Ag2O при следующем соотношении компонентов,мас. P22O5 60,6 63,1; Na2О 25,7 29,3; CaO 2,0 4,3; Al2O3 7,0 9,1; активатор Ag2O 0,05 0,5.

Примеры граничных и промежуточных составов предлагаемого стекла и прототипа приведены в табл. 1.

Способ получения стекол является традиционным в технологии стекловарения. Стекла указанных составов варили в электрической печи с силитовыми нагревателями в кварцевых тиглях с перемешиванием стекломассы. Необходимые окислительные условия при варке стекла создавались за счет использования в качестве исходных материалов шихты фосфорной кислоты и азотнокислых солей. Отлитое в виде плиток стекло отжигали в электрическом муфеле при температуре 360 400oC с последующим инерционным охлаждением. Дозиметрические свойства РФЛ стекол определяются как составом стекла, так и концентрацией активатора, поэтому сравнение дозиметрических характеристик стекол должно проводиться при постоянной концентрации активатора для стекол разных составов, либо варьируя концентрацию активатора, необходимо зафиксировать состав.

В табл. 2 приведены составы исследованных стекол заявляемой области (ограниченные N 1 4 и промежуточный 5) и прототипа N 6 при концентрации активатора 0,1 мас. Ag2O.

Дозиметрические свойства стекол этих составов приведены в табл. 3.

Зависимость дозиметрических свойств стекол предлагаемого состава и прототипа при разных концентрациях активатора дана в табл. 4.

Данные табл. 3 и 4 подтверждаются актами лабораторных испытаний. Выход из заявляемой области составов приводит к ухудшению дозиметрических характеристик стекла, а в ряде случаев к невозможности его получения из-за склонности конкретного состава к ликвации или кристаллизации. В табл. 5 приведены конкретные примеры.

В области низких концентраций активатора, в качестве которого используется драгоценный металл серебро, удалось получить РФЛ стекла, в которых существенно улучшен такой дозиметрический параметр стекла как время созревания: для заявляемой области составов в 4 раза сокращено время созревания РФЛ при уменьшении концентрации активатора в 5 раз в сравнении с прототипом. Оптимальной концентраций активатора для прототипа является 1 мас. Ag2O.

Время созревания для него составляет 2 ч.

Таким образом предложенный состав РФЛ стекла позволяет в 2 раза сократить время созревания радиофотолюминесценции (промежуток времени, по прошествии которого чувствительность стекла выходит на стационарные значения и стекло может работать в качестве детектора улучшения) при снижения оптимальной концентрации активатора в 10 раз.

Похожие патенты RU2070168C1

название год авторы номер документа
РАДИОФОТОЛЮМИНЕСЦЕНТНОЕ СТЕКЛО 1987
  • Вильчинская Н.Н.
  • Дмитрюк А.В.
  • Перминов А.С.
  • Петровский Г.Т.
  • Саввина О.Ч.
RU2045487C1
СПОСОБ ИЗМЕРЕНИЯ ПОГЛОЩЕННОЙ ДОЗЫ ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1996
  • Дмитрюк Александр Васильевич
  • Смирнов Александр Владимирович
  • Строганов Александр Анатольевич
  • Тимофеев Николай Тимофеевич
RU2093859C1
ЛАЗЕРНОЕ ЭЛЕКТРООПТИЧЕСКОЕ СТЕКЛО И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2012
  • Дмитрюк Александр Васильевич
  • Савостьянов Владимир Алексеевич
RU2531958C2
СЕНСОР И ДОЗИМЕТР ДЛЯ УЛЬТРАФИОЛЕТОВОГО ИЗЛУЧЕНИЯ И ФОТОЛЮМИНЕСЦЕНТНОЕ СТЕКЛО ДЛЯ ИХ ИЗГОТОВЛЕНИЯ 1997
  • Дмитрюк А.В.
  • Савостьянов В.А.
  • Тимофеев Н.Т.
  • Рико Даниэль Луи Габриэль
RU2168716C2
ФТОРСОДЕРЖАЩЕЕ СТРОНЦИЙАЛЮМОСИЛИКАТНОЕ СТЕКЛО ДЛЯ СТОМАТОЛОГИЧЕСКИХ СТЕКЛОИОНОМЕРНЫХ ЦЕМЕНТОВ 2022
  • Савинков Виталий Иванович
  • Зинина Энжегель Мансуровна
  • Клименко Наталия Николаевна
  • Сигаев Владимир Николаевич
  • Романенко Анастасия Андреевна
  • Посохова Вера Фёдоровна
  • Чуев Владимир Петрович
  • Бузов Андрей Анатольевич
  • Казакова Валентина Сергеевна
RU2801216C1
ФОТОХРОМНОЕ СТЕКЛО 1993
  • Аношкина Э.В.
  • Атонен О.В.
  • Бедрин А.Г.
  • Грачева Л.В.
  • Молев В.И.
  • Панышева Е.И.
  • Подорова Е.Е.
  • Ромейкова С.П.
  • Туниманова И.В.
  • Филимонов Ю.А.
RU2062756C1
ЛАЗЕРНОЕ ФОСФАТНОЕ СТЕКЛО 2012
  • Патрикеев Алексей Павлович
  • Белоусов Сергей Петрович
  • Герасимов Владимир Михайлович
  • Игнатов Александр Николаевич
  • Поздняков Анатолий Ермолаевич
  • Суркова Валентина Федоровна
  • Авакянц Людмила Игоревна
RU2500059C1
АВАНТЮРИНОВОЕ СТЕКЛО 1991
  • Дворниченко Ирина Николаевна[Ua]
  • Питкевич Софья Брониславовна[Ua]
  • Базыль Зинаида Трофимовна[Ua]
  • Школа Олег Иванович[Ua]
RU2093483C1
Вещество для иммобилизации бериллия, содержащегося в высокоактивных растворах 2017
  • Козлов Павел Васильевич
  • Ремизов Михаил Борисович
  • Беланова Елена Андреевна
  • Корченкин Константин Константинович
  • Тюлин Вячеслав Петрович
  • Волчок Юрий Юрьевич
  • Сунцов Дмитрий Юрьевич
RU2658329C1
СТЕКЛО ДЛЯ ПРОИЗВОДСТВА СТЕКЛОВОЛОКНА 1992
  • Трофимов Н.Н.
  • Хазанов В.Е.
  • Доброскокин Н.В.
  • Шаина З.И.
  • Трофимов А.Н.
RU2017695C1

Иллюстрации к изобретению RU 2 070 168 C1

Реферат патента 1996 года РАДИОФОТОЛЮМИНЕСЦЕНТНОЕ СТЕКЛО

Сущность изобретения: радиолюминесцентное стекло для индивидуального повседневного и аварийного дозиметрического контроля гамма- и рентгеновского излучения содержит компоненты в следующих количествах, мас.%: Р2O5 60,6 - 63,1; Na2O 25,7 - 29,3; CaO 2,0 - 4,3; Al2O3 7,0 - 9,1; Ag2O 0,05 - 0,5. 5 табл.

Формула изобретения RU 2 070 168 C1

Радиофотолюминесцентное стекло для индивидуального повседневного и аварийного дозиметрического контроля гамма- и -рентгеновского излучения, включающее P2O5, Na2O, CaO, Al2O3 и Ag2O, отличающееся тем, что, с целью повышения дозиметрических характеристик в области малых концентраций активатора, оно содержит компоненты в следующих количествах, мас.

P2O5 60,6 63,1
Na2O 25,7 29,3
CaO 2,0 4,3
Al2O3 7,0 9,1
Ag2O 0,05 0,5

Документы, цитированные в отчете о поиске Патент 1996 года RU2070168C1

Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Патент США N 4204976 кл
Светоэлектрический измеритель длин и площадей 1919
  • Разумников А.Г.
SU106A1
РАДИОФОТОЛЮМИНЕСЦЕНТНОЕ СТЕКЛО 1987
  • Вильчинская Н.Н.
  • Дмитрюк А.В.
  • Перминов А.С.
  • Петровский Г.Т.
  • Саввина О.Ч.
RU2045487C1
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1

RU 2 070 168 C1

Авторы

Дмитрюк А.В.

Парамзина С.Е.

Даты

1996-12-10Публикация

1990-02-23Подача