СТАБИЛИЗИРОВАННЫЙ ПО ЧАСТОТЕ ЛАЗЕР Российский патент 1997 года по МПК H01S3/13 

Описание патента на изобретение RU2073949C1

Изобретение относится к квантовой электронике и лазерной технике, оно может быть использовано при создании газовых лазеров, стабилизированных по частоте, предназначенных для лазерной спектроскопии, метрологии, локации, а также других областей науки и техники, где необходима высокая стабильность лазерного излучения.

Известны стабилизированные лазеры [1, 2] в которых в качестве оптических дискриминаторов системы стабилизации используются интерферометры Фабри-Перо, а репером, по которому стабилизируют частоту лазера, является контур пропускания интерферометра. Недостаток такой схемы стабилизации в том, что репер не является физической величиной и частота максимума пропускания интерферометра, а значит, и стабильность, особенно долговременная, полностью определяются внешними шумами, поэтому, даже при тщательной акустической и тепловой изоляции интерферометра, долговременная стабильность и воспроизводимость частоты лазера обычно остается ≈10-9 [2]
Известен также стабилизированный по частоте газовый лазер [3] содержащий задающий генератор, на выходе которого помещен дискриминатор отклонения частоты в виде настраиваемого интерферометра, полость между его зеркалами заполнена газом, обладающим нелинейным поглощением на частоте прибора, оптическую схему согласования волновых фронтов, фильтр-развязку, фотоприемник и систему автоподстройки. Стабильность и воспроизводимость частоты такого лазера главным образом зависят от параметров резонанса поглощения, возникающего в поле стоячей волны в интерферометре, а именно от его ширины и амплитуды и отношения сигнал/шум. Достижимые значения стабильности такого лазера оцениваются как ≈10-14 [4] Для получения высоких значений стабильности и воспроизводимости частоты лазера необходимо иметь резонанс с минимальной шириной, что достигается уменьшением давления поглощающего газа. Однако переход к низким давлениям в поглощении сопровождается резким уменьшением интенсивности резонанса, а значит, и величины отношения сигнал/шум в системе автоподстройки, что препятствует улучшению характеристик стабильности частоты лазера. Необходимое в этом случае повышение чувствительности дискриминатора обеспечивается, как правило, увеличением геометрических размеров поля в интерферометре и повышением добротности последнего. Традиционно это выражается в применении в интерферометре зеркал с большим радиусом кривизны (R ≥ 100 м), что делает интерферометр чувствительным к разъюстировкам и внешним шумам, в увеличении коэффициента отражения, что приводит к уменьшению амплитуды полезного сигнала (хотя контраст резонанса возрастет), а также к возрастанию стоимости системы, и в стремлении улучшить качество настройки интерферометра.

Таким образом, получение высокостабильного по частоте лазерного излучения с применением известного стабилизированного газового оптического квантового генератора сопряжено со значительными трудностями, поскольку с увеличением контраста репера одновременно понижается его интенсивность и отношение сигнал/шум, а применение широкоапертурной, высококачественной оптики повышает требования к настройке интерферометра и существенно повышает стоимость системы.

В основу изобретения положена задача создания стабилизированного по частоте лазера, конструкция которого позволила бы повысить амплитуду полезного сигнала, увеличить контраст репера и тем самым улучшить стабильность и воспроизводимость частоты излучения лазера.

Поставленная задача решается тем, что в стабилизированный по частоте лазер, содержащий задающий оптический квантовый генератор, дискриминатор отклонения частоты в виде настраиваемого интерферометра, содержащего внутри ячейку со средой, нелинейно поглощающей на частоте прибора; оптическую схему согласования волновых фронтов резонаторов генератора и интерферометра; фильтр-развязку; фотоприемник и систему автоподстройки частоты, согласно изобретению, в полость интерферометра дополнительно к поглощающей ячейке помещен оптический квантовый усилитель, работающий на частоте опорного генератора, действие которого компенсирует диссипативные потери в интерферометре, что позволяет повысить контраст и амплитуду репера, отношение сигнал/шум и тем самым достичь более высоких характеристик по стабильности частоты лазера.

На чертеже представлена схема устройства.

Устройство содержит задающий оптический квантовый генератор 1; оптическую схему согласования волновых фронтов резонаторов генератора и интерферометра 2, 3; фильтр-развязку 4; дискриминатор отклонения частоты 5 в виде интерферометра Фабри-Перо, образованного зеркалами 6 и 7, одно из которых наклеено на пьезокерамику 8, и содержащего внутри резонатора ячейку 9, наполненную газом с нелинейным поглощением на частоте задающего генератора, и оптический квантовый усилитель 10; фотодетектор 11; систему автоподстройки частоты 12.

Устройство работает следующим образом.

Задающий генератор 1 работает на частоте, значение которой управляется электрическим сигналом, поступающим на пьезокерамический пакет, на котором закреплено зеркало генератора. Зеркала 2 и 3, образующие оптическую схему согласования волновых фронтов резонаторов генератора 1 и интерферометра 5, направляют излучение генератора 1 в интерферометр 5. Фильтр-развязка 4 исключает влияние оптической обратной связи от зеркал интерферометра на работу генератора. Излучение, пройдя через поглощающую ячейку 9 и оптический квантовый усилитель 10, помещенные между зеркалами 6 и 7 интерферометра, попадает на фотодетектор 11. Система автоподстройки частоты 12 вырабатывает сигнал ошибки и замыкает обратную связь на пьезокерамический пакет 8 зеркала генератора 1. Частота излучения задающего генератора 1, частоты максимумов линий поглощения и усиления, а также частота одного из максимумов пропускания интерферометра должны быть согласованы.

Принцип действия дискриминатора основан на свойстве поглощающего газа насыщаться под действием проходящего электромагнитного излучения. В поле стоячей волны, в интерферометре, это насыщение приводит к возникновению резонансного провала в центре линии поглощения (т.н. провала Лэмба), полуширина которого может быть порядка однородной полуширины Г линии поглощения. Эффект образования провала Лэмба, а также обратного провала Лэмба хорошо известен и широко применяется в квантовой оптике. Дискриминатор предлагаемого устройства включает в себя кроме ячейки, заполненной резонансно поглощающим на частоте прибора газом, и оптический квантовый усилитель, действие которого следующим образом благотворно сказывается на работе всего устройства:
повышает добротность интерферометра, т.е. возрастает число проходов излучения внутри дискриминатора. Это эквивалентно увеличению эффективной длины поглощения и, следовательно, росту контраста резонанса;
в системе увеличивается отношение сигнал/шум, что позволяет уменьшить давление поглотителя без потери в амплитуде резонанса;
с уменьшением давления поглотителя падает величина ухода нуля дискриминатора, что влечет за собой повышение воспроизводимости частоты стабилизированного лазера. Использование меньших давлений в поглощающей ячейке позволяет получать более узкий резонанс, что дает возможность повысить точность привязки лазера к его вершине, а значит, повысить кратковременную стабильность;
усилитель, кроме того, обеспечивает и просто абсолютное увеличение амплитуды сигнала.

Сигнал на выходе такого дискриминатора будет принимать максимальное значение, когда интерферометр находится на пороге самовозбуждения.

В Институте лазерной физики были проведены эксперименты, в которых был зарегистрирован резонанс насыщенного поглощения в активном интерферометре с нелинейно поглощающей средой. Параметры системы: задающий генератор - волноводный СO2 лазер, интерферометр с базой ≈6 м образован зеркалом с R 15 м и пропусканием ≈4,5% с алюминиевой дифракционной решеткой со 150 шт./мм. Усиливающая трубка длиной ≈1,8 м наполнялась смесью CO2:He под общим давлением ≈6 Торр. Поглощающая ячейка имела длину ≈4 м и наполнялась CO2 при давлении 5х10-4 Торр. Вся система была настроена на линию R30. Нами наблюдался резонанс насыщенного поглощения шириной ≈25 кГц и контрастом ≈8% С такими параметрами резонанса нестабильность частоты излучения лазера, стабилизированного по такому реперу, будет составлять величину 10-14 - 10-15. Для сравнения контраст резонанса в работах [2] не превышал 0,5% а ширина была порядка 30 кГц [4]
Таким образом, использование настоящего изобретения позволяет улучшить стабильность и воспроизводимость частоты излучения лазера. Кроме того, применение данного изобретения позволит исключить использование высококачественной оптики в конструкции и снизить требования к юстировке.

Похожие патенты RU2073949C1

название год авторы номер документа
СТАБИЛИЗИРОВАННЫЙ ПО ЧАСТОТЕ ИЗЛУЧЕНИЯ ЛАЗЕР 2001
  • Багаев С.Н.
  • Покасов П.В.
  • Примаков Д.Ю.
RU2210847C1
СПОСОБ СТАБИЛИЗАЦИИ ЧАСТОТЫ ИЗЛУЧЕНИЯ ЛАЗЕРА И СТАБИЛИЗИРОВАННЫЙ ПО ЧАСТОТЕ ИЗЛУЧЕНИЯ ЛАЗЕР 2003
  • Борисов Б.Д.
  • Дычков А.С.
RU2266595C2
СПОСОБ ФОРМИРОВАНИЯ ОПОРНОГО РЕЗОНАНСА НА СВЕРХТОНКИХ ПЕРЕХОДАХ ОСНОВНОГО СОСТОЯНИЯ АТОМА ЩЕЛОЧНОГО МЕТАЛЛА 2006
  • Юдин Валерий Иванович
  • Тайченачев Алексей Владимирович
  • Зибров Сергей Александрович
  • Величанский Владимир Леонидович
RU2312457C1
СПОСОБ СТАБИЛИЗАЦИИ ЧАСТОТЫ ИЗЛУЧЕНИЯ ЛАЗЕРА 2007
  • Борисов Борис Дмитриевич
RU2352038C1
ДВУХЧАСТОТНАЯ ИНТЕРФЕРОМЕТРИЧЕСКАЯ СИСТЕМА ДЛЯ ИЗМЕРЕНИЯ ЛИНЕЙНЫХ ПЕРЕМЕЩЕНИЙ 1994
  • Багаев С.Н.
  • Орлов В.А.
  • Рыбушкин А.Ю.
  • Семибаламут В.М.
  • Фомин Ю.Н.
RU2085841C1
СПОСОБ СТАБИЛИЗАЦИИ ЧАСТОТЫ ИЗЛУЧЕНИЯ ЛАЗЕРА 2009
  • Борисов Борис Дмитриевич
RU2447557C2
ОПТИЧЕСКИ НАКАЧИВАЕМЫЙ ВОЛНОВОДНЫЙ СУБМИЛЛИМЕТРОВЫЙ ЛАЗЕР 1996
  • Клементьев В.М.
  • Тимченко Б.А.
  • Хамоян А.Г.
RU2143162C1
СПОСОБ СТАБИЛИЗАЦИИ ЧАСТОТЫ ЛАЗЕРА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2006
  • Губин Михаил Александрович
  • Крылова Дарья Дмитриевна
  • Тюриков Дмитрий Алексеевич
  • Шелковников Александр Сергеевич
RU2318278C1
ЧАСТОТНО-СТАБИЛИЗИРОВАННЫЙ ЛАЗЕР 1993
  • Миронов Александр Владимирович
RU2054773C1
СТАБИЛИЗИРОВАННЫЙ ДВУХМОДОВЫЙ He-Ne/CH ЛАЗЕР 2007
  • Губин Михаил Александрович
  • Трушковский Эдвард Викентьевич
  • Тюриков Дмитрий Алексеевич
  • Шелковников Александр Сергеевич
RU2343611C1

Реферат патента 1997 года СТАБИЛИЗИРОВАННЫЙ ПО ЧАСТОТЕ ЛАЗЕР

Использование: изобретение относится к квантовой электронике и лазерной технике, оно может быть использовано при создании газовых лазеров, стабилизированных по частоте, предназначенных для лазерной спектроскопии, метрологии, локации, а также других областей науки и техники, где необходима высокая стабильность лазерного излучения. Сущность: для улучшения стабильности и воспроизводимости частоты излучения в стабилизированный по частоте лазер, содержащий задающий оптический квантовый генератор, дискриминатор отклонения частоты в виде настраиваемого интерферометра, содержащего внутри ячейку со средой, нелинейно поглощающей на частоте прибора, оптическую схему согласования волновых фронтов резонаторов генератора и интерферометра, фильтр-развязку, фотоприемник и систему автоподстройки частоты, согласно изобретению, в полость интерферометра дополнительно к поглощающей ячейке помещен оптический квантовый усилитель, работающий на частоте опорного генератора, действие которого компенсирует диссипативные потери в интерферометре, что позволяет повысить контраст и амплитуду репера, отношение сигнал-шум и тем самым достичь более высоких характеристик по стабильности частоты лазера. 1 ил.

Формула изобретения RU 2 073 949 C1

Стабилизированный по частоте лазер, содержащий задающий оптический квантовый генератор, дискриминатор отклонения частоты в виде настраиваемого интерферометра, содержащего внутри поглощающую ячейку со средой, имеющей нелинейное поглощение на частоте прибора, оптическую схему согласования волновых фронтов-резонаторов генератора и интерферометра, фильтр-развязку, фотоприемник и систему автоподстройки частоты, отличающийся тем, что в полость интерферометра дополнительно к поглощающей ячейке помещен оптический квантовый усилитель, работающий на частоте задающего оптического квантового генератора.

Документы, цитированные в отчете о поиске Патент 1997 года RU2073949C1

A.G
Adam et al
Rev
Sci Оnstr
Механизм для сообщения поршню рабочего цилиндра возвратно-поступательного движения 1918
  • Р.К. Каблиц
SU1989A1
Устройство для устранения мешающего действия зажигательной электрической системы двигателей внутреннего сгорания на радиоприем 1922
  • Кулебакин В.С.
SU52A1
Базаров Е.Р
и др
Сдвиги частоты узкого резонанса в OO во внешнем интерферометре вследствиие самофокусировки излучения
Квантовая электроника, 1991, 18, 6, с
Задержка для челнока круглых вязальных машин 1924
  • Эльфверсон А.Р.
SU766A1

RU 2 073 949 C1

Авторы

Багаев С.Н.

Остроменский М.П.

Покасов П.В.

Даты

1997-02-20Публикация

1993-05-12Подача