Предлагаемое изобретение относится к способу получения нейтронов и гамма-квантов в импульсном режиме за счет осуществления реакции синтеза ядер дейтерия и трития в различных веществах при комнатных температурах.
Традиционный способ получения нейтронов и гамма-квантов состоит в использовании явления распада изотопов различных элементов.
Мощный поток нейтронов и гамма-квантов возникает при осуществлении реакции термоядерного синтеза, требующей достижения температур около 108К и давлений в десятки и сотни мегабар.
В предлагаемом способе используется явление так называемого низкотемпературного ядерного синтеза (ДАН СССР, 1989, т.307, с.99), которое состоит в том, что при определенных условиях в твердых телах осуществляется реакция синтеза ядер дейтерия и трития при комнатных или не превышающих нескольких сотен градусов Кельвина температурах, сопровождающаяся образованием нейтронов и гамма-квантов.
В частности, известен способ проведения реакций низкотемпературного синтеза дейтерия путем насыщения чистых металлов дейтерием. При этом насыщение проводят с помощью электролиза или из газовой фазы под давлением. В качестве "накопителя" дейтерия применяют, как правило, переходные металлы Pd и Ti, обладающие высокой способностью к растворению водорода и его изотопов. Для ускорения процесса ядерного синтеза на насыщенные дейтерием образцы воздействуют ультразвуком, термо-, крио- и электроударами (ДАН СССР, 1989, т. 307, с. 99; Препринт ФИАН N 149, Москва, 1989). При проведении этих реакций наблюдается выделение нейтронов или гамма-квантов, но с невысокой интенсивностью, число нейтронов не превышает долей нейтрона на грамм вещества.
Известно также использование переходных и редкоземельных металлов Ti, Pd (в дальнейшем именуемых металлами с d и f валентными электронами) проведения низкотемпературной реакции ядерного синтеза (Р. Н. Кузьмин, Б.Н. Швилкин "Холодный ядерный синтез", М. Знание, 1989; Frascaty preprint LNF-89/048 (p), September, 1989; Nuovo Cimento, 1989, v.191, p.841; LANL Report LA-VR-89-1570, 1989; Tyengar P.K. "Paper submitted to 5th Intern, conferece on Emerging Nuclear Energy Systems", Karlsruhe, FRG, July, 3-6, 1989). В этом случае указанные металлы просто насыщают дейтерием, а реакцию ядерного синтеза наблюдают либо при их растрескивании в процессе насыщения дейтерием, либо при термоциклировании. При осуществлении этих экспериментов нейтронов выделяется несколько больше.
Наиболее близким по существу к заявленному способу является способ, описанный в работе (Письма ЖТФ, 1986, т.12, с.1333). Согласно этому способу в качестве материала для проведения реакции был взят монокристалл LiD. Этот монокристалл устанавливают на свинцовую подложку под тонкую латунную крышку и по нему через латунную крышку ударяют металлическим бойком массой 50 г, который разгоняют в стволе газовой пушки до скорости около 200 м/с. При этом наблюдается выделение слабого потока нейтронов, что говорит о протекании реакции ядерного синтеза.
В основу заявляемого изобретения положена задача разработать способ получения нейтронов и гамма квантов, который обеспечивал повышение выхода нейтронов и гамма-квантов до уровня, представляющего практический интерес, за счет реализации механизма сближения атомов дейтерия в локальных областях материала, а также обеспечивал возможность получать нейтроны и гамма-кванты в импульсно-периодическом режиме.
Эта задача решается тем, что насыщают металл дейтерием до образования выделения гидридной фазы, осуществляют ударное воздействие на металлический образец при температуре окружающей среды, которое сопровождается прохождением ударной волны и образованием неоднородного напряженно-деформированного состояния по объему металла, при этом в качестве материала образца используют атомы металлов с валентными d и f электронами, образующие стабильные соединения с дейтерием, после насыщения металла дейтерием производят механическую и/или термическую обработку для создания в металле структурных неоднородностей, а ударное воздействие осуществляют при амплитуде нагрузки, превышающей 25 ГПА, относительном изменении объема металла не более 30% и температуре ударно-сжатого металла до 3000 К.
Ударное воздействие осуществляется различными путями: налетающим ударником; ударной волной, образующейся, например, при электрическом разряде в жидкости; лазерным импульсом; потоком частиц; пропусканием через материал импульса электрического тока и так далее.
Целесообразно осуществлять механическую обработку металла путем прокатки металла, а термическую обработку металла целесообразно осуществлять путем отжига и/или закалки металла.
Механическая обработки металла проводится в условиях, приводящих к большим сдвиговым напряжениям и деформациям: (волочение, прокатка, кручение, экструдирование, их различные комбинации).
В процессе пластической деформации материала при достижении определенного уровня напряжения (Рс) в зонах деформации материал переходит в новое структурное состояние динамического типа (сильновозбужденное состояние), представляющее совокупность (смесь) кластеров с различным типом ближнего порядка (В. Е. Егорушкин, В. Е.Панин, Е.В.Савушкин, Ю.А.Хон, Известия ВУЗов, 1987, N 6). Под кластером здесь понимается группа одноименных или разноименных атомов. Расположение атомов и расстояния между ними определяют тип ближнего порядка. Тип возникающего ближнего порядка определяется структурой, составом и свойствами материала в локальной зоне. При достаточно малой скорости и интенсивности нагружения в возбужденной зоне формируется структура, в которой расстояние между атомами порядка -0,1 нм, и она распадается с образованием потока дефектов. Если амплитуда Р и длительность t ударной нагрузки удовлетворяют соотношениям:
P>Pc
t<tc (1)
где Pc, tc критические параметры, зависящие от порядкового номера элемента, числа компонентов в соединении и его структурного состояния, то подводимой энергии становится достаточно для образования кластеров с ближним порядком, не характерным для идеального кристалла, в том числе кластеров, в которых расстояния между атомами дейтерия d<<0,1 нм. Важно подчеркнуть, что и возбужденное состояние и разные типы кластеров существуют только в динамически нагруженном кристалле. Число таких кластеров определяется составом материала, его внутренней структурой и условиями нагружения. При этом чем неоднороднее материал, тем больше будет число областей с сильновозбужденным состоянием материала. Поэтому различные виды механической (прокатка, ковка и пр) и термической (отжиг, закалка) обработки, усиливающие неоднородность материала, будут увеличивать поток нейтронов и гамма-квантов.
Физической причиной изменения межатомных расстояний в таких кластерах является появление дополнительного химического взаимодействия атомов, обусловленное перераспределением электронной плотности вследствие динамических внешних воздействий. При этом связь носит резонансный характер, обусловленный d и f электронами металла. Другими словами, сближение атомов до расстояний d<<0,1 нм и образование связанного состояния атомов дейтерия обусловлено общим возрастанием энергии во всем кластере. Расчеты показывают, что кластер, в котором два атома дейтерия образуют связанное состояние с d<<0,1 нм должен содержать около 1000 100000 атомов.
Время t существования указанных неравновесных кластеров определяется условием.
t≈l2/D=tc (2)
где l характерный размер кластера, D коэффициент диффузии. Поэтому время нарастания нагрузки до максимального значения должно определяться условием t<tc. Для l≈0,1 1 нм и D≈10-11 см2/с находим t≈10-5 10-3c. Видно, что высокие температуры, увеличивающие D, резко уменьшают tс.
Таким образом, для проведения реакции ядерного синтеза при низких температурах необходимо кристалл, в структуре которого имеются химически связанные с атомами матрицы атомы дейтерия, подвергнуть ударной нагрузке с указанными выше параметрами. По изложенным причинам атомы дейтерия сближаются друг с другом до расстояний, при которых между ними протекает реакция синтеза.
Физические условия выбора диапазона давления на фронте ударной волны состоят в следующем. Вероятность образования кластера (Po) определяется выражением
Po= exp[-(σt/σ)2], (3)
где σt напряжение, соответствующее потере устойчивости кристаллической решетки и являющееся характеристикой материала, σ напряжение в зоне концентратора напряжений, создаваемое внешней нагрузкой. Из анализа этой формулы следует, что зависимость Po от s имеет S-образную форму, меняясь от нуля при s=0 до 1 при σ_→ ∞.. Например, при =0,15, 0,5, 1,0, 10-P=5•10-20, 0,019, 0,37, 0,99 соответственно. Видно, что характерное значение напряжения, при котором будет протекать реакция синтеза, равно σt. Для материалов, в которых нет полиморфных превращений, σt имеет значение порядка одной десятой модуля сдвига. В реально структурно неоднородных материалах из-за возникновения зон концентраторов напряжений при нагружении величина приложенных напряжений может быть в несколько раз ниже. Таким образом, в качестве критического значения амплитуды ударного воздействия Рс можно принять величину σt/10,, что соответствует значению G/100, где G - модуль сдвига материала. Отметим, что увеличение напряжений свыше 10σt, количества нейтронов практически не увеличивает, но резко увеличивает стоимость проведения экспериментов.
Указанные параметры нагрузки позволяют ударно-нагруженный материал сохранить и подвергнуть его вторичной ударной нагрузке. То есть появляется возможность получать нейтроны и гамма-кванты в импульсно-периодическом режиме.
Способ осуществлялся при комнатной температуре следующим образом. Образец из сплава TiPd стехиометрического состава в упорядоченном состоянии размером (10х10х1) мм насыщался дейтерием до концентрации, при которой объемная доля гидрадной фазы составляла примерно 50% и затем закаливался. После этого образец помещался в герметичную камеру, заполненную водой. В воде производился высоковольтный электрический разряд с длительностью 3-8 мкс. Ударное воздействие может осуществляться различными способами, такими как: механическое воздействие, световое с использованием лазерного излучения, электрическое и тому подобное. Меняя величину подводимой энергии до 30 кДж в импульсе, амплитуду ударной волны увеличивали до 2 ГПа. Для достижения критических напряжений в материале нагрузку производили через стальную пластинку размером (20х20х5) мм, в которой прорезались треугольные канавки глубиной 0,5 мм. Это позволяло уменьшать площадь нагрузки на образец и, тем самым, увеличивать давление. Величину напряжений оценивали делением давления ударной волны в воде на площадь контакта. О протекании реакции судили по показаниям счетчика нейтронов и гамма-квантов.
Реализация описанного выше процесса показала следующее. При давлениях меньше 25 ГПа нейтронов и гамма-квантов не наблюдается. При давлениях свыше 25 ГПа в момент удара фиксировались нейтроны и гамма-кванты в количестве 10-50 нейтронов и нескольких гамма-квантов (3-10) на грамм вещества.
Полученное значение напряжения находится в интервале 0,01σ-σ1 как это было обсуждено выше.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ОСУЩЕСТВЛЕНИЯ РЕАКЦИИ НИЗКОТЕМПЕРАТУРНОГО ЯДЕРНОГО СИНТЕЗА В СИСТЕМАХ С "ТЯЖЕЛЫМИ ФЕРМИОНАМИ" | 1997 |
|
RU2145122C1 |
СПОСОБ УВЕЛИЧЕНИЯ ИНТЕСИВНОСТИ ЭКЗОТЕРМИЧЕСКОЙ РЕАКЦИИ ЯДЕРНОГО СИНТЕЗА С УЧАСТИЕМ ЯДЕР ИЗОТОПОВ ВОДОРОДА В МЕТАЛЛИЧЕСКОМ КРИСТАЛЛИЧЕСКОМ ТЕЛЕ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2011 |
|
RU2521621C9 |
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЕВОЙ КЕРАМИКИ | 1994 |
|
RU2104985C1 |
СПОСОБ ОСУЩЕСТВЛЕНИЯ ЯДЕРНЫХ РЕАКЦИЙ СИНТЕЗА | 2002 |
|
RU2242808C2 |
ИЗНОСОСТОЙКОЕ ИЗДЕЛИЕ И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 1993 |
|
RU2093309C1 |
ГИДРИДНОЕ ТОПЛИВО ДЛЯ ЯДЕРНОГО РЕАКТОРА И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2008 |
|
RU2379773C1 |
СПОСОБ ЯДЕРНОГО СИНТЕЗА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1997 |
|
RU2145123C1 |
СПОСОБ ПОЛУЧЕНИЯ СВОБОДНЫХ НЕЙТРОНОВ | 1992 |
|
RU2056656C1 |
СПОСОБ И УСТРОЙСТВО ДЛЯ ГЕНЕРИРОВАНИЯ ТЕПЛА | 1990 |
|
RU2115178C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ НАНОСТРУКТУРИРОВАННОЙ МИШЕНИ ДЛЯ ПРОИЗВОДСТВА РАДИОИЗОТОПА МОЛИБДЕНА-99 | 2014 |
|
RU2578039C1 |
Использование: ядерная энергетика, получение нейтронов и гамма-квантов в импульсно-периодическом режиме при комнатных температурах. Сущность изобретения: образец переходного или редкоземельного металла и/или сплава на их основе насыщают дейтерием и производят механическую или термическую обработку для создания в металле или сплаве структурных неоднородностей. Обработанный таким способом образец подвергают импульсному воздействию, сопровождающемуся прохождением ударной волны, амплитуда которой превышает 25 ГПа, а относительное изменение объема металла не превышает 30% при температуре ударно-сжатого металла до 3000 К. Импульсное воздействие может осуществляться путем механического или электрического воздействия с использованием лазерного излучения. Механическая обработка осуществляется путем прокатки металла, а термическая путем отжига и/или закалки. Изобретение направлено на повышение выхода нейтронов и гамма-квантов до уровня, представляющего практический интерес. 2 з.п.ф-лы.
Царев В.А | |||
Успехи физических наук,т | |||
Счетная линейка для вычисления объемов земляных работ | 1919 |
|
SU160A1 |
Походная разборная печь для варки пищи и печения хлеба | 1920 |
|
SU11A1 |
Прибор для равномерного смешения зерна и одновременного отбирания нескольких одинаковых по объему проб | 1921 |
|
SU23A1 |
Клюев В.А | |||
и др | |||
Письма в ЖТФ, т | |||
Способ гальванического снятия позолоты с серебряных изделий без заметного изменения их формы | 1923 |
|
SU12A1 |
Крысоловка | 1921 |
|
SU1333A1 |
Авторы
Даты
1997-02-20—Публикация
1994-09-19—Подача