СПОСОБ ИЗГОТОВЛЕНИЯ МЕТАЛЛОПОРИСТОГО КАТОДА Российский патент 1997 года по МПК H01J9/04 H01J1/28 

Описание патента на изобретение RU2074445C1

Изобретение относится к электронной технике, в частности к технологии изготовления металлопористых катодов (МПК), на поверхности которых создается заданная топология эмиттирующей поверхности.

Одной из основных проблем в технологии таких катодов является обеспечение четких границ между эмиттирующей и неэмиттирующей поверхностями, т.е. это задает границы электронного потока в приборе.

Кроме того, эмиттирующее вещество должно полностью отсутствовать на деталях катодно-подогревательного узла (КПУ), примыкающих к эмиттирующей поверхности.

Известен способ изготовления МПК, состоящий из раздельного изготовления пористой матрицы и керна с последующим их соединением в общую конструкцию [1] Такая конструкция обеспечивает четкую границу эмиттирующих областей (эмиссионный контраст), но требует сложной технологии точной сборки, прецизионной сварки, пайки и т.д. т.е. имеет низкую производительность труда.

Известен способ изготовления МПК, в котором пористая матрица из тугоплавких металлов пропитывается расплавленным эмиссионно-активным веществом, избыток которого обычно удаляется после пропитки и охлаждения заготовок механически [2]
Способ, описанный во втором аналоге, более прост по сравнению с первым (исключает прецизионную сварку и упрощает сборку), но не обеспечивает надежно достаточного эмиссионного контраста и загрязняет заготовку материалом инструмента для зачистки.

Известен способ изготовления импрегнированных термоэлектронных катодов - прототип, включающий операции запрессовки порошков тугоплавких металлов или их смесей в керн с предварительно заданным расположением (топологией) эмиттирующихпятен (областей), спекания пористой матрицы, пропитки ее эмиссионно-активными веществами и удаления избытка застывшего расплава эмиссионно-активного вещества с неэмиттирующих поверхностей механически, например с помощью бормашины с одновременным контролем [3]
Этот способ по сравнению с вторым аналогом незначительно улучшает эмиссионный контраст, но очень трудоемок, не позволяет удалять расплав эмиссионно-активного вещества из отверстий, пазов и щелей размером менее 1 мм, а также загрязняет катод материалом инструмента для зачистки.

Целью изобретения является улучшение эмиссионного контраста эмиттирующих и неэмиттирующих поверхностей МПК и повышение производительности труда в случае изготовления КПУ с малыми (< 1 мм) сквозными отверстиями и щелями.

Цель достигается тем, что в известном способе изготовления металлопористого катода для ЭВП, включающем изготовление заданной топологии эмиттирующих и неэмиттирующих участков поверхности, пропитку пористой матрицы расплавленным эмиссионным составом, последующее удаление застывшего на неэмиттирующих поверхностях избытка эмиссионного состава и контроль удаления, удаление избытка эмиссионного состава производят посредством импульсов лазерного излучения с энергией импульсов не более 5 джоулей в импульсе, при этом диаметр луча не превышает размера очищаемой поверхности, а контроль качества очистки производят под микроскопом через заданное число импульсов.

Удаление избытка эмиссионного состава импульсами лазерного излучения с энергией не более 5 джоулей в импульсе обеспечивает:
четкий эмиссионный контраст за счет локального испарения материала;
возможность очистки любых поверхностей, отверстий, пазов, щелей, заполненных расплавом эмиссионно-активного вещества с толщиной слоя в несколько миллиметров;
повышение производительности в 5-10 раз;
простоту операций.

Кроме того, отсутствие загрязнения катода некатодными материалами от инструмента зачистки снимает риск уменьшения эмиссии катода вследствие отравления.

Удаление избытка эмиссионного материала импульсом лазерного излучения с энергией более 5 Дж и диаметром луча, превышающим или равным размеру очищаемой поверхности, приводит к разрушению матрицы катода.

Изобретение можно проиллюстрировать примером изготовления металлопористого катода, имеющего на поверхности катодного диска 6 эмиттирующих пятен и одно установочное отверстие диаметром 0,7 мм и глубиной 0,9 мм. Технология его изготовления включает следующие операции:
запрессовка вольфрамового порошка в катодный диск, причем рабочее пятно заполняется порошком, а установочное отверстие нет;
спекание пористой матрицы;
пропитка пористой матрицы расплавленным алюминатом бария-кальция;
удаление расплава алюмината из установочного отверстия подачей от одного до трех импульсов лазерного излучения диаметром 0,5-0,6 мм с энергией 3 Дж;
контроль качества очистки под микроскопом после каждого импульса.

При энергии импульсов 5 Дж удаление расплава алюмината происходило после 1 импульса.

Предлагаемый способ изготовления позволит по сравнению с прототипом улучшить эмиссионный контраст эмиттирующих и неэмиттирующих поверхностей и обеспечит повышение производительности в 5-10 раз в случае изготовления КПУ с малыми (<1 мм) сквозными отверстиями и щелями.

Кроме того, данный способ снимает риск уменьшения эмиссии катода вследствие отсутствия отравления последнего некатодными материалами от инструмента зачистки.

Похожие патенты RU2074445C1

название год авторы номер документа
МЕТАЛЛОПОРИСТЫЙ КАТОД И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2011
  • Сахаджи Георгий Владиславович
  • Конюшин Александр Валентинович
  • Одинцова Юлия Александровна
  • Попов Иван Андреевич
RU2459305C1
СПОСОБ ОБРАБОТКИ ЭМИТТИРУЮЩЕЙ ПОВЕРХНОСТИ МЕТАЛЛОПОРИСТОГО КАТОДА 2011
  • Сахаджи Георгий Владиславович
  • Конюшин Александр Валентинович
  • Одинцова Юлия Александровна
  • Попов Иван Андреевич
RU2459306C1
СПОСОБ ИЗГОТОВЛЕНИЯ МЕТАЛЛОПОРИСТОГО КАТОДА ЭЛЕКТРОННОГО ПРИБОРА 1994
  • Киселев А.Б.
RU2066895C1
МЕТАЛЛОПОРИСТЫЙ КАТОД И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2000
  • Крылов А.В.
  • Смирнов В.А.
RU2172997C1
СПОСОБ ИЗГОТОВЛЕНИЯ ТЕРМОКАТОДА ДЛЯ ЭЛЕКТРОННОГО ПРИБОРА И СОСТАВ ПРИПОЯ ДЛЯ ИЗГОТОВЛЕНИЯ ТЕРМОКАТОДА 1994
  • Мельникова И.П.
  • Козлов В.И.
  • Усанов Д.А.
RU2079922C1
СПОСОБ ИЗГОТОВЛЕНИЯ КАТОДНО-ФОКУСНОГО УЗЛА 1990
  • Бабанов Ж.Н.
  • Батаев А.С.
  • Морев С.П.
  • Орлов С.М.
  • Перелыгин А.В.
RU1771329C
КАТОД ДЛЯ ГИРО- И РЕЛЯТИВИСТСКИХ СВЧ-ПРИБОРОВ 1996
  • Смирнов В.А.
  • Ильин В.Н.
  • Зайцев Н.И.
  • Мясников В.Е.
  • Потапов Ю.А.
  • Судаков Ю.С.
RU2101797C1
МЕТАЛЛОПОРИСТЫЙ КАТОД 1993
  • Смирнов В.А.
  • Красницкая И.Е.
RU2066892C1
КОЛЬЦЕВОЙ КАТОДНО-ПОДОГРЕВАТЕЛЬНЫЙ УЗЕЛ МОЩНОГО ЭВП 1989
  • Бессмертных В.Н.
  • Евменев Л.Н.
  • Киселев А.Б.
  • Марченко Н.Н.
  • Симонов К.Г.
  • Шемарина К.П.
SU1665828A1
СПОСОБ ИЗГОТОВЛЕНИЯ МЕТАЛЛОПОРИСТОГО КАТОДА 2007
  • Резнев Владимир Алексеевич
  • Резнева Татьяна Георгиевна
RU2333565C1

Реферат патента 1997 года СПОСОБ ИЗГОТОВЛЕНИЯ МЕТАЛЛОПОРИСТОГО КАТОДА

Использование: в электронной технике для улучшения эмиссионного контраста эмиттирующих и неэмиттирующих поверхностей металлопористых катодов и повышения производительности труда в случае изготовления катодно-подогревательного узла с малыми (<1 мм) сквозными отверстиями и щелями. Сущность изобретения: удаление избытка эмиссионного состава с неэмиттирующих поверхностей производят посредством импульсов лазерного излучения с энергией не более 5 Дж в импульсе, при этом диаметр луча не превышает размера очищаемой поверхности, контроль очистки производят под микроскопом.

Формула изобретения RU 2 074 445 C1

Способ изготовления металлопористого катода для электровакуумного прибора, включающий изготовление заданной топологии эмиттирующих и неэмиттирующих участков поверхности, пропитку пористой матрицы расплавленным эмиссионным составом, последующее удаление застывшего на неэмиттирующих поверхностях избытка эмиссионного состава и контроль удаления, отличающийся тем, что удаление избытка эмиссионного состава производят посредством импульсов лазерного излучения с энергией не более 5 Дж в импульсе, при этом диаметр луча не превышает размеров очищаемой поверхности, а контроль качества очистки производят под микроскопом.

Документы, цитированные в отчете о поиске Патент 1997 года RU2074445C1

Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Киселев А.Б., Марченко Н.Н
Катодные узлы для многолучевых приборов
Электронная техника, сер.1: Электроника СВЧ
Циркуль-угломер 1920
  • Казаков П.И.
SU1991A1
Разборный с внутренней печью кипятильник 1922
  • Петухов Г.Г.
SU9A1
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Патент США N 4872864, кл
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1
Гохштейн Б.Ф., Мельников А.И
Некоторые вопросы технологии изготовления импрегнированных термоэлектронных катодов
- Электронная техника, cер
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Способ закалки пил 1915
  • Сидоров В.Н.
SU140A1

RU 2 074 445 C1

Авторы

Лобова Э.В.

Даты

1997-02-27Публикация

1994-09-08Подача