Изобретение относится к измерительной технике.
Известны чувствительные элементы устройств для измерения напряженности слабых магнитных полей, включающие кольцевой магнитопровод из ленточного ферромагнитного материала с высокой магнитной проницаемостью, на котором имеются обмотка возбуждения и сигнальные обмотки. Такой чувствительный элемент, взятый за прототип, имеет, например, датчик меток глубин ДМГ-2, предназначенный для считывания магнитных меток с геофизических кабелей при определении глубины в скважинах [1]
Недостатком этого чувствительного элемента является его температурная нестабильность, обусловленная несовпадением величин температурных коэффициентов линейного расширения материалов магнитопровода и каркаса и сильной зависимостью величины магнитной проницаемости от механических усилий, прилагаемых к магнитопроводу, свойственной всем ферромагнитным материалом с высокой магнитной проницаемостью. Например, для пермаллоя магнитная проницаемость падает в сотни раз при усилиях порядка 2 кг/мм2 [2]
При изменениях температуры окружающей среды меняется величина натяга в магнитопроводе, являясь причиной изменения его магнитной проницаемости. При большом перепаде температур это может привести к значительному изменению характеристик устройства и даже к прекращению его функционирования.
Техническая задача, решаемая изобретением, заключается в уменьшении влияния температуры окружающей среды на основные характеристики устройства, что позволяет повысить его надежность и расширить область его применения.
Решение задачи обеспечивается тем, что витки магнитопровода закреплены точечной сваркой в единое кольцо и надеты на каркас, являющийся цилиндрической распорной пружиной. При этом сама распорная пружина состоит из двух одинаковых пружинных колец с круговым бортиком с одной стороны, имеющих щелевой разрез по образующей, причем их размеры связаны соотношениями:
a C
b (0,07 0,1) Dм,
Dк Dм + (0,4-0,6)g,
g (0,8-1,2)b,
где a высота бортика,
b ширина щелевого зазора,
c толщина магнитопровода,
g толщина кольца,
Dм внутренний диаметр кольцевого магнитопровода,
Dк наружный диаметр кольца.
Кольца распорной пружины выполняются из алюминиевого сплава любой марки.
На фиг.1 показана в разрезе конструкция чувствительного элемента устройства измерения напряженности слабого магнитного поля, взятого за прототип. На каркасе 1, выполненном из немагнитного материала, навит с определенным натягом ленточный ферромагнитный материал, образующий кольцевой магнитопровод 2, на котором намотаны обмотка возбуждения и сигнальные обмотки 3.
На фиг. 2 приведена конструкция кольцевого ленточного магнитопровода 1, витки которого скреплены между собой точечной сваркой.
На фиг.3 приведена конструкция распорной кольцевой пружины 2 с бортиком 3 и щелевым разрезом 4, составляющая половину каркаса.
На фиг. 4 изображена конструкция предложенного чувствительного элемента устройства для измерения напряженности слабых магнитных полей (обмотка возбуждения и сигнальные обмотки не показаны). Пружинящие кольца 2 вставлены в сжатом состоянии внутрь магнитопровода 1 с обеих сторон.
После снятия сжимающих усилий они распрямляются, образуя единый каркас, обеспечивающий постоянное растягивающее усилие в магнитопроводе, имеющее величину порядка сотен грамм на квадратный миллиметр его сечения.
Величина этого усилия при соблюдении указанных выше размеров каркаса практически не зависит от температуры окружающей среды и существенно ниже тех значений, при которых наблюдаются значительные изменения магнитной проницаемости ферромагнитных материалов с высокой магнитной проницаемостью.
Применение алюминиевых сплавов для кольцевых пружин обеспечивает требуемые механические характеристики и упрощает их изготовление.
Приведенные выше оптимальные соотношения значений размеров распорных кольцевых пружин определены эмпирическим путем.
В качестве примера реализации представлены основные параметры чувствительного элемента экспериментального образца датчика магнитных меток, опробованного на буровых установках г. Стрежевого Томской области:
Магнитопровод имеет 5 витков ленточного пермаллоя марки 79НМ шириной 10 мм и толщиной 50 мкм. При этом Dм 30 мм, b 3 мм, Dк 31,5 мм, g 3 мм. Кольцевые пружины выполнены из алюминиевого сплава САВ-2Т.
Чувствительный элемент, являющийся частью устройства для считывания магнитных меток с геофизических кабелей, успешно прошел испытания в составе штатного оборудования буровых установок производственного объединения Томскнефтьгеофизика, г. Стрежевой, в климатических условиях севера при перепадах температур от -40 до +50oC (высокие температуры обусловлены периодическим обливанием датчика горячей водой для оттаивания обледеневших элементов буровых вышек).
название | год | авторы | номер документа |
---|---|---|---|
ЩЕЛЕВОЙ ФИЛЬТРОВАЛЬНЫЙ ПАТРОН | 1997 |
|
RU2140316C1 |
СПОСОБ ЭЛЕКТРОМАГНИТНОГО ПРЕССОВАНИЯ ИЗДЕЛИЙ ИЗ ПОРОШКОВЫХ ФРАКЦИЙ, ОРИЕНТИРУЕМЫХ В МАГНИТНОМ ПОЛЕ, И ЭЛЕКТРОМАГНИТНЫЙ ПРЕСС ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ) | 1994 |
|
RU2086028C1 |
МАГНИТОПРОВОД НАМАГНИЧИВАЮЩЕГО УСТРОЙСТВА | 1998 |
|
RU2171983C2 |
ИНДУКЦИОННЫЙ ЭЛЕКТРОМАГНИТНЫЙ КОАКСИАЛЬНЫЙ ЛАБИРИНТНЫЙ НАГРЕВАТЕЛЬ ЖИДКОСТЕЙ | 2015 |
|
RU2604963C2 |
УСТРОЙСТВО ДЛЯ МАГНИТНОЙ ОБРАБОТКИ ЖИДКОСТИ | 1998 |
|
RU2133710C1 |
МАГНИТНЫЙ СЕПАРАТОР | 1999 |
|
RU2159681C2 |
Магнитомодуляционный датчик | 1979 |
|
SU789924A1 |
ЩЕЛЕВОЙ ФИЛЬТРОВАЛЬНЫЙ ПАТРОН | 2001 |
|
RU2196631C1 |
СПОСОБ ЭКСПРЕССНОГО ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ АМЕРИЦИЯ В ПОРОШКООБРАЗНОЙ СМЕСИ С ПЛУТОНИЕМ | 1998 |
|
RU2142127C1 |
Способ изготовления чувствительного элемента магнитоупругого датчика усилия | 1991 |
|
SU1795310A1 |
Изобретение относится к измерительной технике и может быть использовано при разработке различных устройств для измерения напряженности слабых магнитных полей. Сущность изобретения: витки магнитопровода, выполненного намоткой ленточного ферромагнитного материала с высокой магнитной проницаемостью, закреплены между собой точечной сваркой и надеты на каркас, являющийся распорной цилиндрической пружиной, которая состоит из двух одинаковых колец с круговым бортиком с одной стороны, имеющих щелевой разрез по образующей и выполненных из алюминиевого сплава. Этим достигается высокая температурная стабильность устройства с таким чувствительным элементом, расширяется область их применения. 2 з.п. ф-лы, 4 ил.
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Займовский А.С., Чудновская Л.А | |||
Магнитные материалы.- М.: Госэнергоиздат, 1957, с | |||
Способ изготовления электрических сопротивлений посредством осаждения слоя проводника на поверхности изолятора | 1921 |
|
SU19A1 |
Авторы
Даты
1997-05-27—Публикация
1995-01-11—Подача