Изобретение относится к биологической защите от рентгеновского излучения и может быть использовано для изготовления наполнителей в полимерной, резинотехнической, кабельной промышленности.
Наиболее широко используется в качестве рентгенозащитного материала в полимерах и резинотехнических матрицах и композициях высокодисперсный металлический свинец [1]
Известный рентгенозащитный материал неравномерно распределяется в объеме пластических масс ввиду его гидрофильности (смачивание водой) и высокой разности удельных масс свинца и пластических масс.
Известен рентгенозащитный материал, включающий, гидроалюминат бария и баритовый песок [2]
Недостатком известного материала является недостаточно высокие рентгенозащитные свойства, высокая гидрофильность материала, комкование при хранении, вымывание из материала ядовитых солей бария (ПДК=6 мг/м3).
Наиболее близким по технической сущности и достигаемому результату является рентгенозащитный материал, включающий оксиды свинца, железа и карбонат кальция при следующем соотношении компонентов, мас. PbO (70 90), FeO (5 25) и CaCo (5 10) [3]
Известный материал не обладает гидрофобными свойствами (смачивается водой) и недостаточно высокими рентгенозащитными свойствами в области жесткого рентгеновского излучения (E=100 200 кэВ). При длительном хранении во влажных условиях материал комкуется, теряет высокую сыпучесть.
Технической задачей данного изобретения является повышение рентгенозащитный и гидрофобных свойств материала.
Поставленная задача достигается тем, что рентгенозащитный материал, включающий оксид свинца, содержит дополнительно этилсиликонат натрия и стеарат цинка при следующем соотношении компонентов в предлагаемом материале, мас.
Оксид свинца 95 97
Этилсиликонат натрия 1 4
Стеарат цинка 1 2
Предложенное техническое решение отличается от известного рентгенозащитного материала тем, что материал представляет однородную композицию, состоящую из модифицированного этилсиликонатом натрия оксида свинца белого цвета и экранированного гидрофобной оболочкой из стеарата цинка. Химическая модификация и гидрофобизация оксида свинца способствует снижению экологической опасности свинцовосодержащих соединений, используемых в качестве наполнителей в пластических массах. Признаки, отличающие техническое решение от прототипа, не выявлены в других технических решениях при излучении данной и смежной областей техники.
Пример: Суспензию гидроксида свинца с влажностью 25 30% смешивают в смесителе в течение 20 30 мин с этилсиликонатом натрия при комнатной температуре. Суспензию высушивают при температуре 170 180oC до остаточной влажности 0.1 0.15 мас. и диспергируют в шаровой мельнице при температуре 80 100oC в присутствии стеарата цинка в течение 15 20 мин.
Готовый материал белого цвета обладает высокой сыпучестью, не смачивается водой, с размером частиц не более 15 мкм.
Этилсиликонат натрия (ТУ 6-02-696-76) представляет собой 15-20%-ный водный раствор кремний органического соединения. При термической обработке модифицированный гидроксид свинца переходит в модифицированную форму оксида свинца, частицы которого экранированы кремнийорганическим соединением. Дополнительная обработка модифицированного оксида свинца стеаратом цинка пластифицирует материал и повышает его гидрофобность.
Составы предлагаемого и известного рентгенозащитных материалов представлены в таблице 1.
Результаты испытаний свойств материалов приведены в табл.2. Рентгенозащитные свойства материалов изучены на пресс-порошках, спрессованных под давлением 50 МПа, толщине 1.0 см на аттестованной во ВНИИФТРИ (г. Москва) гамма-спектрометрической установке в прямой осевой геометрии "источник-образец-детектор (кристалл NaI (Ti) 63x63"). Исследования приведены на базе рентгеновского источника Pm 147.
Данные табл. 2 показывают, что предлагаемый рентгенозащитный материал обладает высокими гидрофобными свойствами (водопоглощение снижается в 9 11 раз в сравнении с известным материалом). Значительно более высокие и рентгенозащитные показатели в предлагаемом материале: кратность ослабления излучения с энергией 40; 86 и 145 кэВ возрастает в 2 2.6 раза. Предлагаемый рентгенозащитный материал имеет особенно высокие рентгеновские характеристики в низкоэнергетическом (E= 10 40 кэВ) и высокоэнергетическом (E= 140 200 кэВ) поле рентгеновского излучения.
Предлагаемый рентгенозащитный материал имеет белый цвет, высокую дисперсность и хорошо совместим с пластическими и резинотехническими массами. Максимальная температура эксплуатации материала с сохранением гидрофобных свойств 150oC.
Предлагаемый материал расширяет номенклатуру радиационнозащитных материалов и является перспективным наполнителем пластических и резино-технических композиций, используемых в атомной, радиохимической промышленности и медицинской радиологии и рентгеновской диагностике.
название | год | авторы | номер документа |
---|---|---|---|
РЕНТГЕНОЗАЩИТНАЯ РЕЗИНА | 1994 |
|
RU2077745C1 |
СПОСОБ МОДИФИЦИРОВАНИЯ КАРБОНАТА КАЛЬЦИЯ | 1994 |
|
RU2077485C1 |
РЕНТГЕНОЗАЩИТНЫЙ МАТЕРИАЛ | 1995 |
|
RU2091873C1 |
СПОСОБ ПОЛУЧЕНИЯ НАПОЛНИТЕЛЯ | 1994 |
|
RU2078774C1 |
СПОСОБ ПОЛУЧЕНИЯ СВИНЦОВОГО КРОНА | 1994 |
|
RU2090581C1 |
ЗАЩИТНЫЙ КОНТЕЙНЕР | 1994 |
|
RU2081465C1 |
КОМПОЗИЦИЯ ДЛЯ ПОЛУЧЕНИЯ ПЕНОПЛАСТА | 1993 |
|
RU2065458C1 |
ЗАЩИТНЫЙ КОНТЕЙНЕР | 1994 |
|
RU2076360C1 |
МАТЕРИАЛ ДЛЯ ЗАЩИТЫ ОТ РАДИОАКТИВНОГО ВОЗДЕЙСТВИЯ | 1994 |
|
RU2063074C1 |
РЕНТГЕНОЗАЩИТНАЯ РЕЗИНА | 2000 |
|
RU2208254C2 |
Использование: для защиты от рентгеновского излучения. Сущность изобретения: рентгенозащитный материал содержит оксид свинца, этилсиликонат натрия и стеарат цинка при следующем соотношении, мас.%, оксид свинца 95 - 97; этилсиликонат натрия 1 - 4; стеарат цинка 1 - 2. 2 табл.
Рентгенозащитный материал, включающий оксид свинца, отличающийся тем, что материал содержит дополнительно этилсиликонат натрия и стеарат цинка при следующем соотношении компонентов, мас.
Оксид свинца 95 97
Этилсиликонат натрия 1 4
Стеарат цинка 1 2р
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Кондратьев А.Н | |||
и др | |||
Технический прогресс в атомной промышленности: Сер | |||
Изотопы, 1987, вып.1 (73) с.85-87 | |||
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Рентгенозащитный материал | 1979 |
|
SU834772A1 |
Выбрасывающий ячеистый аппарат для рядовых сеялок | 1922 |
|
SU21A1 |
Епифанцев Б.Н | |||
и др | |||
Неразрушающий контроль, т.1: Контроль излучения | |||
- М.: Высшая школа, 1992, с.303. |
Авторы
Даты
1997-06-10—Публикация
1994-05-16—Подача