СПОСОБ ПЕРЕРАБОТКИ ШЛАМА ХРОМАТНОГО ПРОИЗВОДСТВА Российский патент 1997 года по МПК C01G37/02 C01G37/14 C01F5/24 

Описание патента на изобретение RU2083497C1

Изобретение относится к переработке шлама, получаемого при производстве хромата натрия окислительным разложением хромовых руд, и касается, в частности, извлечения из хроматного шлама соединений магния и может быть использовано на заводах хромовых соединений в процессе утилизации шлама, например, при производстве на его базе углекислой магнезии или оксида магния.

Известен способ переработки хроматных шламов, заключающийся в восстановлении содержащегося в них шестивалентного хрома до трехвалентного состояния путем обработки водных суспензий шлама серусодержащими восстановителями в щелочной среде при температуре 122-160oC [1] К недостаткам данного способа можно отнести то, что ни сам шлам, ни его компоненты полезно не используются
Известен способ переработки хроматных шламов, основанный на извлечении основной массы хрома путем обработки шламов соляной кислотой; продукт обработки складируют в отвалах, а извлеченный таким образом хром отправляют на дальнейшую переработку [2] Способ не обеспечивает полноты извлечения хрома, а шлам полезно не используется.

Наиболее близким к предлагаемому является способ переработки хроматных шламов, основанный на обработке их углекислотой (диоксидом углерода) с одновременным извлечением соединений хрома (VI) и магния [3] Техническая сущность способа состоит в двухстадийной обработке водной суспензии хроматных шлама с Т: Ж-1: (20-40) при температуре 20-40oC 30%-ной углекислотой в присутствии сернокислого кальция. К его недостаткам следует отнести низкую степень извлечения хрома (VI) из хроматного шлама (48-60%), его многостадийность, необходимость использования концентрированного газообразного диоксида углерода и разбавленных по твердому веществу суспензий.

Задачей изобретения является упрощение процесса и его аппаратурного оформления при одновременном повышении степени извлечения таких компонентов шлама, как соединения магния и хрома (VI), его обезвреживании и переработке.

Задача решается тем, что водную суспензию хроматного шлама, в отличие от известного, подвергают при повышенной температуре сернокислотной обработке с последующим ее разделением: из полученных магний- и хром (VI)-содержащих растворов последовательно осаждают гидроксид хрома (III) и углекислую соль магния, а обработанный шлам после восстановления остаточного хрома (VI) подвергают термической обработке, получая воздушное вяжущее.

Сущность изобретения состоит в разложении соединений магния и хрома (VI) хроматного шлама и их извлечении в раствор путем обработки предварительно приготовленной водной суспензии шлама при массовом соотношении Ж:Т в пределах (3: 8):1 серной кислотой при температуре 70-100oC и конечном значении pH реакционной массы 4-7, поддерживаемом введением серной кислоты со скоростью 2,5-7 л H2SO4/кг MgOшлама•ч, отделения образовавшегося раствора сульфата магния и соли хромовой кислоты от твердой фазы обработанного шлама, очистки получаемого раствора от соединений хрома (VI) и кальция и термообработки осадка обработанного шлама при температуре 150-180oC, причем предварительно с помощью серусодержащего восстановителя (диоксид серы, сульфид, сульфит, тиосульфат натрия) переводят остаточный хром (VI) шлама в гидроксид хрома (III).

Очистку растворов сульфата магния от соединений кальция ведут одновременно с восстановлением хрома (VI) и осаждением гидроксида хрома (III) путем последовательной их обработки при pH 4,8-7,8 и температуре 40-90oC серусодержащим восстановителем, выбранным из указанной выше группы, и карбонатом натрия. Из очищенного раствора сульфата магния затем осаждают углекислую соль магния карбонат или гидроксокарбонат магния, термообработкой которых получают высококачественный оксид магния.

В случае использования предварительно обезвреженного хроматного шлама, например по [1] т.е. не содержащего шестивалентного хрома, в процессе сернокислотного разложения получают растворы сульфата магния, не требующие очистки от хрома (VI): после осаждения кальция их концентрируют и непосредственно перерабатывают на товарный продукт.

Пример 1. Используют влажный шлам хроматного производства мас. 16,8 MgO, 19,2 CaO, 7,1 Fe2O3, 4,9 SiO2 и 2,1 хрома (VI), в пересчете на CrO3 (соединения хрома (VI) в шламе присутствуют в водо- и кислоторастворимой форме CrO3в.р. и CrO3к.р.).

А. 0,15 кг исходного шлама смешивают с 3,5• 10-4м3 раствора сульфата натрия со стадии промывки карбоната магния, получая водную суспензию с Ж:Т 4,0: 1, которую нагревают и в течение 0,45 ч со скоростью 5,2 л H2SO4/кг MgOшлама•ч при перемешивании вводят серную кислоту до pH 5,0. Температуру в реакторе поддерживают в пределах 95-100oC.

После 30-мин выдерживания реакционной массы при данных значениях pH и температуры ее фильтруют на вакуумной воронке со средней скоростью по фильтрату 1,13 м32•ч. Осадок на фильтре промывают 1•10-4м3 горячей воды, получая при этом 4,2•10-4м3 фильтрата раствора сульфата магния состава (кг/м3): 185 MgSO4; 6,5 CrO3; 2 CaSO4; 0,1 SiO2 и 0,03 соединений алюминия и железа, в перерасчете на оксид алюминия и 0,185 кг осадка обработанного шлама с содержанием 0,21 мас. CrO3в.р. и 0,18 мас. CrO3к.р. После восстановления остаточного хрома (VI) тиосульфатом натрия согласно уравнению:

осадок подвергают термообработке при температуре 150-180oC.

Степень разложения соединений магния составила 91% степень извлечения хрома 94,6 мас.

Аналогичный результат получают, осуществляя процесс сернокислотного разложения шлама при 80oC, вводя серную кислоту со скоростью 2,5 л H2SO4/кг MgOшлама•ч до pH среды 6,8-7,0.

B. 3,5•10-4м3 полученного раствора сульфата магния смешивают с 9•10-6М3 раствора тиосульфата натрия и полученную смесь с молярным отношением CrO3: Na2S2O3, равным 1,33, при 90oC обрабатывают серной кислотой до полного восстановления Cr(VI) до Cr(III) в соответствии с уравнением (1). Степень восстановления хрома (VI) контролируют по индикатору дифенилкарбозиду. Затем вводят 1M раствор карбоната натрия до pH среды 5,4-5,6 и отфильтровывают выпавший осадок гидроксида хрома (III) и соединений кальция, который направляют на переработку, например, в производство хромового дубителя, а очищенный раствор сульфата магния на осаждение карбоната магния.

Аналогичный результат получают, осуществляя очистку получающихся растворов сульфата магния от примесей хрома (VI) и кальция при температуре 60oC последовательно сульфитом и карбонатом натрия при конечном значении pH среды 7,5-7,8.

C. 3•10-4м3 очищенного раствора сульфата магния при температуре 50oC обрабатывают 1M раствором карбоната натрия, вводя последний до pH среды 8,4. Количество введенного карбоната натрия составило 98 мас. против теоретически необходимого в уравнении:
MgSO4+Na2CO3+3H2O __→ MgCO3•3H2O+Na2SO4 ...(2)
После 20-мин выдерживания суспензии карбоната магния при данных температуре и pH среды, ее фильтруют; осадок отмывают от примесей на фильтре с промежуточной репульпацией, затем подсушивают его и прокаливают при температуре 950-1000oC, получая целевой продукт-оксид магния с содержанием мас. 98,7 MgO; 0,47 CaO; 0,13 SiO2 и 0,03 Fe2O3 + Al2O3.

Фильтрат раствор сульфата натрия с содержанием 2 кг/м3 MgSO4 направляют на переработку с целью получения кристаллического NaSO4; а промывные воды возвращают в начало процесса (п.A) для приготовления водной суспензии хроматного шлама для сернокислотного разложения.

Пример 2. Используют шлам хроматного производства, аналогичный примеру 1.

A. 0,15 кг влажного шлама смешивают с 4•10-4м3 оборотного раствора со стадии промывки карбоната магния (стадия 1-C), получая суспензию с Ж:Т-5:1. Последнюю нагревают и при перемешивании вводят серную кислоту, поддерживая скорость ее подачи 4 л H2SO4/кг MgOшлама•ч, до pH среды 5,5. Температуру в реакторе поддерживают 70oC. После выдерживания реакционной массы в течение 1 ч ее фильтруют со средней скоростью по фильтрату 1 м32•ч; осадок на фильтре промывают 1•10-4м3 горячей воды, получая 4,8•10-4м3 раствора сульфата магния состава (кг/м3): 160 MgSO4; 5,7 CrO3; 1,7 CaSO4; 0,09 SiO2 и 0,03 Al2O3 + Fe2O3 и 0,180 кг осадка обработанного шлама, содержащего 0,19 мас. CrO3в.р. и 0,16 мас. CrO3к.р., с которым поступают как описано выше (п.A-1).

Степень разложения соединений магния шлама составила 89,3 мас. степень извлечения хрома 93,7 мас.

Аналогичный результат получают, осуществляя процесс сернокислотного разложения хроматного шлама при 98-100oC, вводя серную кислоту со скоростью 7л H2SO4/кг MgOшлама•ч до pH среды 4,0-4,2.

B. 4•10-4м3 раствора сульфата магния, указанного в п.A состава, помещают в склянку Вульфа, через которую барботируют диоксид серы до полного восстановления Cr(VI) до хрома (III), в соответствии с уравнением:

Затем в раствор при перемешивании и температуре 40-50oC вводят 1M раствор карбоната натрия до pH среды 4,8-5,0 и отфильтровывают выпавший осадок гидроксида хрома (III), а далее поступают как в B-1.

Аналогичный результат получают, осуществляя очистку растворов сульфата магния от хрома (VI) и соединений кальция последовательным введением при температуре 85oC растворов сульфида натрия для восстановления хрома (VI) и карбоната натрия для осаждения гидроксида хрома (III).

C. 3,5•10-4м3 очищенного раствора сульфата магния нагревают до 90oC и медленно, при перемешивании вводят 1M раствор карбоната натрия до pH среды 8,2. Количество введенного карбоната натрия составило 95-96% против теоретического в уравнении.


Осадок гидрокcокарбоната магния отфильтровывают, отмывают от примесей, подсушивают и затем прокаливают при 950-1000oC, получая целевой продукт-оксид магния состава мас. 98,5 MgO; 0,34 CaO; 0,11 SiO2; и 0,03 Fe2O3 + Al2O3.

Фильтрат-раствор сульфата натрия с содержанием 1,6 кг/м3 MgSO4 направляют на переработку на кристаллический сульфат натрия; а промывные воды возвращают в начало процесса (п.A) для приготовления водной суспензии хроматного шлама.

Выбор концентрационных, температурных, временных пределов параметров процесса сернокислотного разложения хроматных шламов обусловлен следующим:
при понижении Ж:Т в исходной водной суспензии шлама ниже нижнего предела наблюдается ухудшение фильтруемости ее и возрастают потери извлекаемых компонентов при фильтрации; повышение же Ж:Т выше верхнего предела сопряжено с переработкой больших по объему количеств пульп и растворов. Данные табл.1 позволяют сделать выбор оптимальных пределов Ж:Т, обеспечивающих получение магнийсодержащих растворов с заданным содержанием MgSO4, при технологически приемлемой скорости фильтрации суспензии (содержание CrO3в.р. приведено для непромытого шлама);
конечное значение pH среды в пределах 4-7 при заявляемых пределах Ж:Т, температуры и скорости введения серной кислоты обеспечивает достижение технологически приемлемой скорости фильтрации суспензии и достаточно высокую степень разложения соединений магния и извлечения соединений хрома (VI) шлама при одновременно низкой степени перехода примесных соединений (кальций, кремний, алюминий, железо) в растворы сульфата магния.

Как следует из табл.2, повышение pH среды выше верхнего предела резко снижает степень разложения соединений магния шлама (содержание сульфата магния в фильтрате снижается более чем в два раза); понижение же ниже нижнего недопустимо из-за разложения железосодержащих минеральных фаз шлама и загрязнения получаемых растворов сульфата магния.

При понижении температуры ниже нижнего предела уменьшается степень извлечения магния и ухудшается фильтруемость суспензий; повышение же выше верхнего предела нецелесообразно по экономическим и эксплуатационным причинам; повышение скорости приливания серной кислоты выше верхнего предела приводит, кроме нарушения безопасных условий труда (сильное вспенивание, разбрызгивание суспензии), к локальным перекислением суспензии (особенно в условиях малоинтенсивного перемешивания суспензии) и как следствие к резкому ухудшению ее фильтруемости; понижение же скорости приливания серной кислоты ниже нижнего предела нецелесообразно из-за снижения производительности процесса.

Выбор температурных и концентрационных пределов параметров процесса осаждения гидроксида хрома (III) обусловлен необходимостью достижения полноты осаждения хрома (III) и получения гидроксида хрома (III) в хорошо фильтрующейся форме при минимальном переходе магния в осадок в виде его основных солей. Аналогичное влияние оказывает и температура: при низких температурах ухудшается фильтруемость образующегося гидроксида хрома (III).

Выбор температурных пределов термообработки шлама после сернокислотного разложения сделан на основании изучения вяжущих свойств: в заявляемом интервале температур шлам обладает наилучшими вяжущими свойствами и может быть предложен в качестве одного из компонентов при получении строительных материалов.

Дополнительным преимуществом предлагаемого способа переработки хроматных шламов является получение высококачественного оксида магния специального назначения, например, для производства теплонагревательных элементов.

Похожие патенты RU2083497C1

название год авторы номер документа
МАССА ДЛЯ ИЗГОТОВЛЕНИЯ СТРОИТЕЛЬНЫХ ИЗДЕЛИЙ И СПОСОБ ЕЕ ПОЛУЧЕНИЯ 1995
  • Середа А.Б.
  • Калиниченко И.И.
  • Попов Б.А.
  • Горяйнов В.Э.
  • Середа Б.П.
  • Смирнов С.В.
  • Коминова Л.В.
  • Леканов Л.П.
RU2081087C1
СПОСОБ ПЕРЕРАБОТКИ ЩЕЛОЧНОГО СУЛЬФАТ-ТИОСУЛЬФАТНОГО РАСТВОРА 1992
  • Середа Б.П.
  • Пахомов Б.А.
  • Коминова Л.В.
  • Попов Б.А.
  • Голубева Т.Б.
  • Смирнов С.В.
  • Селиверстов Н.Ф.
  • Исаев А.И.
  • Окатьев В.Ф.
  • Горяйнов В.Э.
RU2042609C1
Способ очистки сульфата натрия 1988
  • Середа Борис Петрович
  • Балдуева Галина Ивановна
  • Рябин Виктор Афанасьевич
  • Смирнов Сергей Владимирович
  • Попова Ольга Игоревна
  • Ильичева Елена Борисовна
  • Солошенко Александра Алексеевна
  • Кравченко Галина Александровна
SU1662932A1
СПОСОБ ПЕРЕРАБОТКИ ШЛАМА ХРОМАТНОГО ПРОИЗВОДСТВА 2005
  • Плышевский Юрий Сергеевич
  • Гаркунова Наталья Власьевна
  • Захаров Константин Николаевич
  • Ткачев Константин Васильевич
  • Ласыченков Юрий Яковлевич
RU2281249C1
СПОСОБ ПЕРЕРАБОТКИ ЩЕЛОЧНЫХ СУЛЬФАТНО-ТИОСУЛЬФАТНЫХ РАСТВОРОВ 1992
  • Середа Б.П.
  • Попов Б.А.
  • Голубева Т.Б.
  • Пахомов Б.А.
  • Смирнов С.В.
  • Демидова О.В.
  • Селиверстов Н.Ф.
  • Горяйнов В.Э.
  • Халявин В.Н.
  • Исаев А.И.
RU2042623C1
ПИРОМЕТАЛЛУРГИЧЕСКИЙ СПОСОБ УТИЛИЗАЦИИ ОТХОДОВ ХРОМАТНОГО ПРОИЗВОДСТВА 2017
  • Сафронов Николай Николаевич
  • Сафронов Герман Николаевич
  • Харисов Ленар Рустамович
RU2651173C1
Способ очистки газов от сероводорода и диоксида серы 1990
  • Середа Борис Петрович
  • Попов Борис Алексеевич
  • Ильичева Елена Борисовна
  • Коминова Людмила Владимировна
  • Киселева Галина Вячеславовна
  • Смирнов Сергей Владимирович
  • Бояршинов Юрий Александрович
  • Кинева Евгения Александровна
  • Солошенко Александра Алексеевна
  • Прохоров Анатолий Григорьевич
  • Кравченко Галина Александровна
SU1738313A1
СПОСОБ ПЕРЕРАБОТКИ ШЛАМА ХРОМАТНОГО ПРОИЗВОДСТВА 2016
  • Циппер Александр Аронович
  • Басов Вадим Наумович
  • Островский Сергей Владимирович
  • Пойлов Владимир Зотович
  • Миков Александр Григорьевич
RU2652178C2
СПОСОБ ИЗВЛЕЧЕНИЯ МЕТАЛЛОВ ИЗ ОТРАБОТАННОГО РАСПЛАВА ПРОИЗВОДСТВА ТЕТРАХЛОРИДА ТИТАНА 1993
  • Кудрявский Ю.П.
  • Фрейдлина Р.Г.
  • Бондарев Э.И.
  • Яковенко Б.И.
RU2075521C1
Способ утилизации отходов хроматного производства методами черной металлургии 2017
  • Сафронов Николай Николаевич
  • Сафронов Герман Николаевич
  • Харисов Ленар Рустамович
RU2674209C2

Иллюстрации к изобретению RU 2 083 497 C1

Реферат патента 1997 года СПОСОБ ПЕРЕРАБОТКИ ШЛАМА ХРОМАТНОГО ПРОИЗВОДСТВА

Изобретение относится к переработке шлама, получаемого при производстве хромата натрия окислительным разложением хромовых руд и касается, в частности, извлечения хромата натрия и соединений магния и может быть использовано на заводах хромовых соединений в процесс утилизации хроматного шлама, например, при производстве на его базе углекислой магнезии или оксида магния. Изобретение позволяет упростить процесс и его аппаратурное оформление при одновременном обезвреживании и переработке шлама. Сущность изобретения состоит в том, что способ переработки шламов хроматного производства включает разложение соединений магния и хрома (VI) шлама путем обработки его водной суспензии серной кислотой при массовом соотношении Ж:Т в суспензии в пределах 3-8, температуре 70-100oC, конечном значении pH среды 4-7, поддерживаемом введением кислоты со скоростью 2,5-7 л H2SO4/кг MgOшлама•ч. Образовавшийся раствор сульфата магния и хромовой кислоты отделяют от твердой фазы - обработанного шлама, который после довосстановления остаточного хрома (VI) до хрома (III), подвергают обработке при температуре 150-180oC. Очистку растворов сульфата магния от соединений хрома и кальция совмещают с восстановлением хрома (VI) и осаждением гидроксида хрома (III) путем последовательной обработки их при pH 4,8-7,8 и температуре 40-90oC серусодержащим восстановителем и карбонатом натрия. Из очищенного раствора сульфата магния осаждают карбонат или гидроксокарбонат магния, термообработкой которых получают высококачественный оксид магния. 3 з.п.ф-лы, 2 табл.

Формула изобретения RU 2 083 497 C1

1. Способ переработки шлама хроматного производства, включающий обработку его водной суспензии кислотным реагентом при повышенной температуре, отделение осадка от магнийсодержащего раствора и переработку последнего на углекислую соль магния, отличающийся тем, что в качестве кислотного реагента используют серную кислоту и обработке ею подвергают водную суспензию шлама с соотношением Ж Т (3 8) 1 при 70 100oС до pH среды 4 7, причем серную кислоту подают со скоростью 2,5 7,0 л H2SO4/кг MgO шлама.час, осадок после отделения подвергают термообработке, а магнийсодержащий раствор - очистке от соединений хрома и кальция путем последовательной обработки при pH 4,8 7,8 и температуре 40 90oС серосодержащим восстановителем и карбонатом натрия. 2. Способ по п.1, отличающийся тем, что в качестве серосодержащего восстановителя используют диоксид серы, сульфид, сульфит или тиосульфат натрия, продуктом окисления которых является сульфат натрия. 3. Способ по п.1, отличающийся тем, что термообработку осадка ведут при 150 180oС.

Документы, цитированные в отчете о поиске Патент 1997 года RU2083497C1

Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Способ переработки хроматных шламов 1980
  • Середа Борис Петрович
  • Пономарева Инна Михайловна
  • Рябин Виктор Афанасьевич
  • Портнягина Эмилия Владимировна
  • Никитина Наталия Гавриловна
  • Секираж Валентин Михайлович
  • Попов Борис Алексеевич
  • Ваулина Анфия Александровна
  • Шмидт Андрей Николаевич
  • Судаков Владимир Дмитриевич
SU969674A1
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Прицепной валкователь фрезерного торфа 1987
  • Андриков Николай Николаевич
  • Басалай Григорий Антонович
  • Кислов Николай Владимирович
SU1472675A1
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1
Авторское свидетельство СССР N 689950, кл
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1

RU 2 083 497 C1

Авторы

Середа Б.П.

Демидова О.В.

Попов Б.А.

Пономарева И.М.

Горяйнов В.Э.

Середа А.Б.

Решетников Б.С.

Коминова Л.В.

Даты

1997-07-10Публикация

1995-01-17Подача