Изобретение относится к области теплоснабжения и может быть использовано для отопления и горячего водоснабжения жилых и производственных помещений.
Известно выполнение теплоаккумулирующего элемента в виде капсулы, заполненной плавящейся в зоне рабочих температур эвтектической смесью солей. Капсулы укладываются в общий теплоизолированный контейнер. Для организации подвода тепла к зарядно-разрядному теплообменнику и отвода тепла от него за счет испарения-конденсации применяется отдельный теплоноситель (Бекман Г. Гилли П. Тепловое аккумулирование энергии. М. Мир, 1987, с. 64).
Известен также электрический нагреватель, содержащий корпус, разделенный поперечной перфорированной перегородкой на верхнюю и нижнюю камеры, первая из которых снабжена патрубком подвода нагреваемого теплоносителя, а последняя заполнена теплоаккумулирующим веществом с фазовым переходом в зоне рабочих температур и снабжена электронагревательным элементом. Электронагреватель снабжен дополнительной поперечной перегородкой, размещенной в верхней камере с образованием между дополнительной и перфорированной перегородками полости, объем которой равен разности объемов теплоаккумулирующего вещества в твердом и жидком состояниях при температуре плавления теплоаккумулирующего вещества. После включения электронагревательного элемента нагрев теплоносителя (вода) начинается только после полного расплавления теплоаккумулирующего вещества. После отключения электронагревательного элемента и начала твердения вещества в полости образуется воздушная прослойка, препятствующая отбору тепла к теплоносителю, что повышает равномерность нагрева помещения через боковые стенки корпуса. В качестве плавящегося вещества предложено использовать парафин.
На базе этого электрического нагревателя построена отопительная система, в которую отдельные электронагреватели могут быть включены как в номинальном своем положении, так и повернутыми на 180o относительно своей горизонтальной оси. Соединение электронагревателей осуществляется трубами с помощью соединительных муфт. Электрическое соединение осуществляется резьбовыми муфтами (авт. св. 1688071 AI, МКИ5 F 24H 7/00, 1/20 от 30.10.91 г.).
К недостаткам известной конструкции относятся низкая эффективность подвода и съема тепла вследствие невысокой теплопроводности парафина как в твердом, так и в жидком состояниях, что ограничивает геометрические размера нагревателя. Ограничения на максимальные размеры, накладываемые низкой теплопроводностью парафина, вместе с невысокой теплотой плавления 40 кВт-час/м3 при температуре около 60oC, приводят к высокой материалоемкости и низкой эффективности отопительной системы в целом для обогрева жилых помещений.
Задачей авторов является повышение удельной емкости единичного теплоаккумулирующего элемента и за счет этого удешевление стоимости изготовления и повышения эффективности эксплуатации теплового аккумулятора, созданного на его базе.
Для решения поставленной задачи авторами предложено теплоаккумулирующий элемент изготавливать в виде цилиндра со сквозным центральным отверстием из композиционного материала, содержащего основу из жаростойкой керамики, в которой распределены гранулы из заэвтектических сплавов на основе алюминия с кремнием. Этот теплоаккумулирующий элемент может быть выполнен как монолитным, так и виде суммы отдельных блочков. Составы жаростойкой керамики и гранул должны быть согласованы как по совместимости в рабочем диапазоне температур, так и по коэффициентам термического расширения (КТР). В частности для аккумуляторов тепла на базе Al Si сплавов, предназначенных для обогрева жилых помещений, наиболее удобными в качестве рабочих температур являются минимальные температуры плавления в системе Al Si, составляющие 577-700oC, что отвечает составу сплава с 12,5-25 мас. кремния, а наиболее близкой по КТР керамикой для данных сплавов является керамика на основе окиси магния.
Одной из основных технических проблем, связанных с созданием тепловых аккумуляторов, на основе предлагаемых высокотемпературных элементов, является проблема высокоэффективной теплоизоляции. В предлагаемой конструкции теплового аккумулятора теплоизоляция, в частности как вариант, может быть выполнена в виде трех слоев. Первый слой выполняется из жаростойкого высокопористого бетона, в котором зафиксированы теплоаккумулирующий элемент или группа теплоаккумулирующих элементов. Исходя из функционального назначения и температурных условий работы, в качестве материала первого слоя могут использоваться, в частности, бетоны из дешевых с низкой собственной удельной плотностью и теплопроводностью материалов типа муллит, форстерит, динас, шамот, вермикулит с пористостью 50-70% При выполнении этого слоя теплоизоляции в виде прямоугольника в сечении путем постановки одного теплоизолированного блока на другой, можно организовать многоэлементный тепловой аккумулятор.
Полученная таким образом сборка, состоящая из одного или нескольких теплоаккумулирующих элементов с теплоизоляцией из пористого бетона, закрепляется через теплоизолирующие прокладки в металлическом контейнере с двойными стенками. Пространство между теплоаккумулирующей сборкой и внутренними стенками металлического контейнера заполняется высокоэффективной теплоизоляцией, например на основе минеральной ваты. Пространство между внутренней и внешней металлическими стенками является третьим теплоизоляционным слоем и в зависимости от мощности теплового аккумулятора используется для организации естественной или принудительной конвекции теплоносителя. В качестве теплоносителя в первую очередь могут использоваться воздух и/или вода.
В частности, естественная конвекция воздуха реализуется путем организации сквозных каналов на разных уровнях с регулируемым проходным сечением для управления мощностью теплосъема. Принудительная конвекция осуществляется дополнительной установкой микровентиляторов на входе воздуха в тепловой аккумулятор.
Для аппаратов большой тепловой мощности в пространство между внутренней и внешней металлической стенками дополнительно могут быть вставлены водяные теплообменники (змеевики) с естественной или принудительной циркуляцией воды.
Дополнительно, в верхней части тепловой аккумулятор может иметь съемную теплоизолирующую крышку, закрывающую плоский радиатор, служащий для приготовления пищи.
Предлагаемая конструкция позволяет существенно увеличить удельную емкость теплоаккумулирующего элемента. Так, например, для элемента с наружным диаметром 100 мм, внутренним диаметром для электрического нагревателя 15 мм и общей длиной 650 мм, изготовленного из композиционного материала на основе окиси магния с 50% по объему гранул из заэвтектического сплава Al+12,5 мас. Si, емкость теплоаккумулирования составляет 2,7 кВт-часа в рабочем диапазоне температур 300-700oC. Сборка из четырех таких элементов будет обладать емкостью в 10 кВт-часов, а тепловой аккумулятор в целом будет иметь внешние габариты (ориентировочно) 1000х1000х400 мм. Учитывая небольшие величины плотностей используемых материалов(~ 2,5 3,0 г/см3), удельная емкость тепловыделения по отношению к активной части теплового аккумулятора составит 0,2 кВт•ч/кг или 0,6 кВт•ч/дм3.
Высокая теплопроводность используемых композиционных материалов (~ 100 Вт/м oК) позволяет при необходимости наращивать единичную емкость ТА без каких-либо ограничений, а многослойная конструкция теплоизоляции обеспечивает эффективное ограничение температуры внешних теплоотдающих поверхностей.
На чертеже приведена конструкция теплового аккумулятора.
Он состоит из теплоаккумулирующих элементов 1, изготовленных из композиционного материала, состоящего из жаростойкой керамики и гранул из Al-Si-сплава, в сквозное центральное отверстие 2 вставлен трубчатый электрических нагреватель 3. Монолитный блок из высокопористого бетона 4 служит первым слоем теплоизоляции. Сборка из теплоаккумулирующих элементов закреплена в металлическом контейнере с двойными стенками 5 и 6. Пространство между сборкой и стенками металлического контейнера заполнено высокоэффективной теплоизоляцией 7. В пространстве между внутренней и наружной металлическими стенками могут быть организованы каналы для съема запасенного тепла с помощью воздуха 8 и/или воды 9. В верхней части теплового аккумулятора находится теплоизолирующая съемная крышка 10, открывающая доступ к плоскому радиатору 11, служащему для приготовления пищи.
Работает тепловой аккумулятор следующим образом. При подключении электропитания к электрическим нагревателям в них происходит выделение тепла, которое передается окружающему композиционному материалу теплоаккумулирующего элемента. Материал, обладая высокой теплопроводностью, быстро разогревается. Гранулы, входящие в его состав, расплавляются. При этом аккумулируется теплота плавления, составляющая от 100 до 300 кВт•час/м3 термодинамически высокоэффективной энергии в зависимости от объемной доли гранул Al-Si-сплава в составе теплоаккумулирующих элементов без учета внутреннего теплосодержания. После полного их расплавления процесс накопления тепла заканчивается и электрические нагреватели отключаются. Запасенное тепло передается в помещение через слои теплоизоляции и излучается преимущественно фронтальными панелями. При необходимости увеличить тепловой поток используются каналы воздушного охлаждения и/или водяные радиаторы. По мере расходования запасенного тепла происходит затвердевание гранул Al-Si-сплава по направлению к центру теплоаккумулирующего элемента. После полного затвердевания гранул тепловой аккумулятор готов к повторному циклу.
Указанный тепловой аккумулятор изготавливается следующим образом. Теплоаккумулирующее вещество, содержащее гранулы выбранного состава Al-Si-сплава с объемным содержанием 30-70% замешивается вместе с керамической массой на основе окиси магния, формируется в виде цилиндрической заготовки с центральным отверстием и затем подвергается реакционному спеканию. Полученные таким образом элементы, по отдельности или в виде группы, заформовываются внутрь жаростойкого высокопористого бетона прямоугольной формы на основе легких с низкой собственной теплопроводностью материалов, выбранных из группы муллит, форстерит, шамот, перлит, вермикулит. Полученный блок вместе с вставленными электрическими нагревателями, теплоизоляцией устанавливается в металлическом контейнере с двойными стенками. При необходимости увеличить теплосъем организуются каналы для циркуляции теплоносителя (вода или воздух).
название | год | авторы | номер документа |
---|---|---|---|
ТЕПЛОАККУМУЛИРУЮЩИЙ МАТЕРИАЛ | 1993 |
|
RU2096439C1 |
ТЕПЛОВОЙ АККУМУЛЯТОР | 1996 |
|
RU2123157C1 |
ЭЛЕКТРИЧЕСКИЙ НАГРЕВАТЕЛЬ | 1992 |
|
RU2044224C1 |
СИСТЕМА ОХЛАЖДЕНИЯ ВАКУУМНОГО ТРУБОПРОВОДА МАГНИТОЛЕВИТАЦИОННОГО ТРАНСПОРТА | 2018 |
|
RU2681763C1 |
ЭЛЕКТРОТЕПЛОАККУМУЛИРУЮЩИЙ НАГРЕВАТЕЛЬ | 2012 |
|
RU2518920C2 |
КОМПЛЕКС АВТОНОМНОГО ЭЛЕКТРОТЕПЛОСНАБЖЕНИЯ ЗДАНИЯ | 2014 |
|
RU2569403C1 |
СИСТЕМА ГЕЛИОТЕПЛОХЛАДОСНАБЖЕНИЯ | 2013 |
|
RU2538347C1 |
Теплоаккумулирующий модуль-теплообменник | 2022 |
|
RU2791245C1 |
СПОСОБ ТЕРМОРЕГУЛИРОВАНИЯ ВЫСОКОТЕМПЕРАТУРНОЙ АККУМУЛЯТОРНОЙ БАТАРЕИ | 1992 |
|
RU2031491C1 |
СПОСОБ ПОЛУЧЕНИЯ ТЕПЛОВОЙ ЭНЕРГИИ ИЗ ЭЛЕКТРИЧЕСКОЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ КУТЭР ПЕТРОВА | 2010 |
|
RU2455579C2 |
Использование: для аккумулирования теплоты фазового перехода в тепловых аккумуляторах для обогрева жилых помещений. Сущность изобретения: теплоаккумулирующий элемент выполнен в виде блока с каналами из композиционного материала, содержащего основу из жаростойкой керамики, в которой распределены гранулы из заэвтектического сплава на основе алюминия с кремнием. Композиционный материал, в частности, выполняется на основе окиси магния с гранулами из сплава на основе алюминия с 12,5-25,0 мас.% кремния с объемным содержанием гранул до 30-70% (объемн.). Описываемый теплоаккумулирующий элемент используется в качестве основы теплового аккумулятора и закреплен внутри монолитного блока из высокопористого бетона на основе материала, выбранного из группы муллит, форстерит, шамот, перлит, вермикулит. Сборка из одного или нескольких монолитных блоков теплоизолируется в металлическом контейнере с двойными стенками, пространство между которыми заполняется высокоэффективной теплоизоляцией, а также может быть использовано для организации каналов естественной или принудительной конвекции теплоносителя. 2 с. и 2 з. п. ф-лы, 1 ил.
Бекман Г., Гилли П | |||
Тепловое аккумулирование энергии | |||
- М.: Мир, 1987, с | |||
Нефтяной конвертер | 1922 |
|
SU64A1 |
Электронагреватель | 1989 |
|
SU1688071A1 |
Пишущая машина для тюркско-арабского шрифта | 1922 |
|
SU24A1 |
Авторы
Даты
1997-08-27—Публикация
1993-07-16—Подача