ЭЛЕКТРИЧЕСКАЯ МАШИНА Российский патент 1997 года по МПК H02K9/04 

Описание патента на изобретение RU2089033C1

Изобретение относится к охлаждению электрических машин.

В большинстве случаев охлаждение электрических машин производится потоком воздуха окружающей среды.

По способу охлаждения электрические машины могут быть подразделены на два типа: закрытые и защищенные.

Отвод тепла у закрытых машин [1] обычно производится обдувом оребреной наружной поверхности корпуса. Обдув корпуса осуществляется вентиляционным узлом, состоящим из крыльчатого колеса (вентилятора) и кожуха, формирующего поток воздуха. Оребрение корпуса увеличивает (развивает) его обдуваемую поверхность и соответственно повышает эффективность охлаждения машины. Тепло от греющихся активных частей в закрытых машинах передается к корпусу большей частью через поверхность механического сопряжения пакета статора с корпусом машины. Кроме того, в закрытых машинах создается внутренний цикл вентиляции, переносящий тепло от активных частей машины к внутренней поверхности корпуса за счет перемешивания воздуха в зоне лобовых частей машины.

Окружающий воздух и присутствующие в нем посторонние частицы во внутреннюю полость закрытых машины не попадают, что позволяет использовать их в условиях прямого воздействия атмосферных осадков и агрессивной или загрязненной среды.

Недостатком закрытой электрической машины следует считать относительно низкую эффективность ее охлаждения, обусловленную отсутствием непосредственного теплового контакта греющихся частей с воздухом окружающей среды и рассеивание потока воздуха, обдувающего оребренный корпус за пределами кожуха, формирующего воздушный поток, что ведет к повышенному расходу активных материалов (обмоточной меди и электротехнической стали).

Отвод тепла у защищенных машин [2] производится внешним воздухом непосредственно от греющихся активных частей машины.

Корпус защищенных машин в поперечном сечении обычно по форме близок к квадрату; между корпусом и внешней поверхностью пакета статора таким образом создаются угловые вентиляционные каналы.

В качестве примера рассматривается защищенная машина с осевой вентиляцией. Центробежный вентилятор всасывает воздух внешней среды через вентиляционные отверстия в подшипниковом щите, расположенном с противоположной по отношению к вентилятору стороны и прогоняет его через внутреннюю полость машины, обдувая лобовые части обмотки статора и внешнюю поверхность пакета статора в зонах угловых вентиляционных каналов. Пройдя через отверстия в подшипниковом щите со стороны вентилятора, воздух выбрасывается из машины через жалюзи в кожухе вентилятора.

Использоваться защищенные машины могут только в закрытых чистых помещениях, однако охлаждение у них более эффективно, чем у закрытых, что позволяет уменьшить расход активных материалов на их производство.

Тем не менее, в охлаждении защищенных машин есть свои проблемы. Главным образом они связаны с низкой эффективностью обдува внешней поверхности пакета статора: внешняя поверхность пакета статора невелика, а поток охлаждающего воздуха контактирует с ней только незначительной своей частью. Тепловой контакт между пакетом статора и корпусом в защищенных машинах незначителен, что обуславливает неучастие обдува воздухом внутренней поверхности корпуса в охлаждении машины. В большинстве защищенных машин тепловым лимитером, ограничивающим дальнейшее снижение расхода активных материалов и повышение надежности и долговечности машин, является именно температура пакета статора.

В ряде конструкций закрытых машин создается усиленный цикл внутренней вентиляции [3] Обдув наружной оребреной поверхности корпуса здесь происходит так же, как в обычных закрытых машинах. Циркулирующий внутри машины воздух нагнетается внутренним вентилятором в специально выполненные каналы корпуса машины и возвращается в зону низкого давления вентилятора через аксиальные каналы ротора. Таким образом, тепло от лобовых частей обмотки статора и от ротора переносится к развитой поверхности внутренних каналов эффективно охлаждаемого наружным воздухом корпуса. В машинах этой конструкции хороший тепловой контакт между пакетом статора и корпусом обычно достигается путем механической обработки сопрягаемых поверхностей.

Наиболее близким по конструктивным признакам аналогом изобретения является закрытая электрическая машина с гофрированным корпусом [4] Корпус в ней выполняется гофрированием листовой или рулонной стали. При этом в корпусе выполняются полые ребра, образующие внутренние осевые каналы корпуса, сообщающиеся с внутренней полостью машины через окна, выполненные также гофрированием корпуса. Воздух внутреннего цикла вентиляции в такой электрической машине через окна в полых ребрах корпуса прогоняется внутренним вентилятором в его внутренние каналы и возвращается в зону низкого давления вентилятора через аксиальные каналы ротора. Обдув наружной оребреной поверхности корпуса здесь также происходит, как в обычных закрытых машинах. Высокая эффективность охлаждения в машинах этой конструкции достигается интенсивным переносом тепла от лобовых частей обмотки статора и от ротора к развитой поверхности стенок внутренних каналов эффективно охлаждаемого наружным воздухом корпуса, а также идеальным тепловым контактом между пакетом статора и корпусом: между ребрами корпус соединяется с пакетом статора путем сварки. Недостатком закрытой электрической машины с гофрированным корпусом тем не менее является относительно низкая эффективность ее охлаждения, обусловленная отсутствием непосредственного теплового контакта греющихся частей с воздухом окружающей среды и, соответственно, повышенный расход активных материалов (обмоточной меди и электротехнической стали).

Изобретение решает задачу повышения эффективности охлаждения электрических машин и соответственно снижения расхода активных материалов на их производство и повышения надежности и долговечности.

Указанный технический результат достигается тем, что в электрической машине, состоящей из пакета статора с обмоткой, пакета ротора с обмоткой, подшипниковых щитов, расположенных по торцам гофрированного корпуса, образующего полыми ребрами его внутренние вентиляционные каналы, вентилятора и его кожуха, подшипниковые щиты выполнены с вентиляционными отверстиями.

На фиг.1. Изображена электрическая машина с гофрированным корпусом (вид сбоку); на фиг. 2. электрическая машина с гофрированным корпусом (вид со стороны рабочего конца вала).

Приведенная на фиг.1 и 2 электрическая машина выполнена с гофрированным корпусом 1, образующим полыми ребрами его внутренние вентиляционные каналы 2, и осевой системой вентиляции. В корпусе располагается пакет 3 статора с обмоткой 4, соединенный с корпусом швами с высокой теплопроводностью. По торцам корпуса установлены подшипниковые щиты 5 и 6 с вентиляционными отверстиями. В подшипниковых щитах закреплен вал 7 электрической машины. На валу расположены ротор 8 с осевыми каналами 9 и вентилятор 10. На подшипниковом щите, расположенном со стороны вентилятора, установлен его кожух 11 с жалюзи.

Охлаждающий воздух внешней среды засасывается вентилятором 10 через специально выполненные вентиляционные отверстия в щите 5, расположенном с противоположной вентилятору стороны, и прогоняется через внутренние осевые каналы 2, созданные полыми ребрами гофрированного корпуса 1, обдувая при этом непосредственно лобовые части обмотки 4 статора, поверхность пакета 3 статора и развитую поверхность стенок внутренних каналов корпуса, а затем выходит из полости машины через специально выполненные вентиляционные отверстия в щите 6, расположенном со стороны вентилятора и выбрасывается наружу через жалюзи кожуха 11. Интенсивность охлаждения машины этой конструкции обусловлена непосредственным контактом охлаждающего воздуха внешней среды с лобовыми частями обмотки статора, поверхностью пакета статора и с развитой поверхностью стенок внутренних каналов корпуса при высоком тепловом контакте между гофрированным корпусом и пакетом статора в местах из соединения между собой сварными швами и сторгом формировании потока охлаждающего воздуха внешней среды внутренними каналами корпуса. Часть потока охлаждающего воздуха может проходить через осевые каналы 9 ротора 8.

Сравнение с наиболее близким аналогом.

В изобретенной электрической машине, как и в ближайшем аналоге, гофрированный корпус машины соединен с пакетом статора швами высокой теплопроводности, что обеспечивает эффективный отвод тепла от пакета статора потоком воздуха, контактирующего с поверхностью корпуса.

В отличие от наиболее близкого аналога в изобретенной электрической машине отвод тепла от лобовых частей обмотки статора, от поверхности пакета статора и от стенок внутренних каналов корпуса, соединенного с пакетом статора швами высокой теплопроводности, производится непосредственно охлаждающим воздухом внешней среды, причем поток этого воздуха не рассеивается, строго формируясь внутренними каналами корпуса. Эти обстоятельства, а также отсутствие вращающихся элементов (каналы ротора) в аэродинамическом цикле охлаждения позволяет существенно повысить эффективность охлаждения предлагаемой электрической машины и соответственно снизить расходы активных материалов на ее изготовление, увеличить ее надежность и долговечность.

Похожие патенты RU2089033C1

название год авторы номер документа
ЭЛЕКТРИЧЕСКАЯ МАШИНА 2000
  • Русаковский А.М.
  • Балкинд О.Я.
  • Вахитов Ю.Г.
  • Горелик Л.В.
  • Деснер О.Г.
  • Кравчик А.Э.
  • Крутояров А.В.
  • Петров С.В.
  • Пискунов С.В.
RU2173018C1
КОМБИНИРОВАННАЯ СИСТЕМА ОХЛАЖДЕНИЯ ЗАКРЫТОЙ ИНДУКТОРНОЙ МАШИНЫ 2016
  • Андреев Александр Самуилович
  • Окунеева Надежда Анатольевна
  • Рудин Виктор Геннадьевич
  • Русаков Анатолий Михайлович
  • Соломин Александр Николаевич
  • Шатов Виталий Александрович
RU2695320C1
Закрытая электрическая машина 1973
  • Борисенко Александр Иванович
  • Костиков Олег Николаевич
  • Чумаченко Виктор Иванович
  • Яковлев Александр Иванович
SU554595A1
ИНДУКТОРНЫЙ ГЕНЕРАТОР С ВОЗДУШНОЙ СИСТЕМОЙ ОХЛАЖДЕНИЯ 2021
  • Андреев Александр Самуилович
  • Сугробов Анатолий Михайлович
  • Русаков Анатолий Михайлович
RU2770909C1
ДВУХСЛОЙНАЯ ОБМОТКА ЭЛЕКТРИЧЕСКОЙ МАШИНЫ 1992
  • Горелик Лев Вениаминович
  • Кузьменко Владимир Михайлович
  • Карлов Виктор Константинович
  • Цыренжапов Виктор Дармаевич
RU2019897C1
Электрическая машина 1979
  • Ищенко Анатолий Иванович
  • Кухарский Май Петрович
  • Бойко Евгений Петрович
  • Макаров Феликс Константинович
  • Петров Виктор Михайлович
SU817872A1
Электрическая машина 1991
  • Бурковский Анатолий Николаевич
  • Дмитренко Юрий Иванович
  • Збарский Леонид Александрович
  • Ширнин Иван Григорьевич
  • Захарченко Петр Иванович
  • Красников Геннадий Васильевич
  • Поршнев Юрий Васильевич
SU1820978A3
ЭЛЕКТРИЧЕСКАЯ МАШИНА С ЖИДКОСТНЫМ ОХЛАЖДЕНИЕМ СТАТОРА 2004
  • Кравченко Александр Игнатьевич
  • Матвеев Лев Иванович
  • Федоренко Римма Ивановна
RU2283525C2
ИНДУКТОРНЫЙ ГЕНЕРАТОР С ВОЗДУШНОЙ СИСТЕМОЙ ОХЛАЖДЕНИЯ 2020
  • Андреев Александр Самуилович
  • Русаков Анатолий Михайлович
  • Сугробов Анатолий Михайлович
  • Жердев Игорь Александрович
  • Соломин Александр Николаевич
  • Шатов Виталий Александрович
  • Казимиров Евгений Олегович
RU2740792C1
ЗАКРЫТАЯ ЭЛЕКТРИЧЕСКАЯ МАШИНА 2002
  • Данилевич Я.Б.
  • Машковцев В.В.
  • Голуб А.В.
RU2228571C2

Иллюстрации к изобретению RU 2 089 033 C1

Реферат патента 1997 года ЭЛЕКТРИЧЕСКАЯ МАШИНА

Использование: в области электротехники. Сущность: электрическая машина имеет корпус, выполненный гофрированием из листовой стали. Полные ребра корпуса образуют внутренние осевые вентиляционные каналы. Щиты машины выполнены открытыми, что позволяет создать систему охлаждения, основанную на непосредственном отведении тепла от активных частей машины охлаждающим воздухом внешней среды. Высокий тепловой контакт между пакетом статора и корпусом обеспечивается с высокой теплопроводностью сварных швов, соединяющих их. Поток охлаждающего воздуха внешней среды, проходящий по внутренним вентиляционным каналам корпуса и сформированный этими каналами, отводит тепло не только от пакета статора, но и от развитой поверхности стенок внутренних вентиляционных каналов, что обеспечивает интенсивный отвод тепла с поверхности пакета статора и повышает эффективность охлаждения машины, что позволяет снизить расход материалов на производство электрических машин, увеличить их надежность и долговечность, унифицировать конструкции закрытых и защищенных машин. 2 ил.

Формула изобретения RU 2 089 033 C1

Электрическая машина, состоящая из пакета статора с обмоткой, пакета ротора с обмоткой, подшипниковых щитов, расположенных по торцам гофрированного корпуса, образующего полыми ребрами его внутренние вентиляционные каналы, вентилятора и его кожуха, отличающаяся тем, что в подшипниковых щитах выполнены вентиляционные отверстия с возможностью непосредственного контакта охлаждающего воздуха внешней среды с лобовыми частями обмотки статора, внешней поверхностью пакета статора и поверхностью внутренних каналов корпуса.

Документы, цитированные в отчете о поиске Патент 1997 года RU2089033C1

Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Гурин Я.С., Кузнецов Б.И
Проектирование серий электрических машин
- М.: Энергия, 1978, с
Устройство для охлаждения водою паров жидкостей, кипящих выше воды, в применении к разделению смесей жидкостей при перегонке с дефлегматором 1915
  • Круповес М.О.
SU59A1
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Там же, с
Способ приготовления сернистого красителя защитного цвета 1915
  • Настюков А.М.
SU63A1
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1
Алексеев А.Е
Конструкция электрических машин
- М.-Л.: ГЭИ, 1958, с
Устройство для охлаждения водою паров жидкостей, кипящих выше воды, в применении к разделению смесей жидкостей при перегонке с дефлегматором 1915
  • Круповес М.О.
SU59A1
Очаг для массовой варки пищи, выпечки хлеба и кипячения воды 1921
  • Богач Б.И.
SU4A1
Электрическая машина 1984
  • Тубис Яков Борисович
  • Фанарь Михаил Саулович
  • Радин Владимир Исакович
  • Воробьева Ираида Александровна
  • Капалина Злата Анатольевна
SU1179483A1
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1

RU 2 089 033 C1

Авторы

Горелик Л.В.

Даты

1997-08-27Публикация

1996-01-12Подача