СПОСОБ ПОЛУЧЕНИЯ СИНГЛЕТНОГО КИСЛОРОДА Российский патент 1997 года по МПК H01S3/95 H01S3/225 

Описание патента на изобретение RU2090966C1

Изобретение относится к квантовой электронике, преимущественно к химическим лазерам непрерывного действия, и может быть использовано при создании иодно-кислородного лазера многоцелевого назначения для получения синглетного кислорода энергоносителя лазеров этого типа.

В настоящее время известно, что в стабильном (триплетном) состоянии на внешней неполностью заполненной πg-орбитали молекулы кислорода, если рассматривать электронную конфигурацию этой молекулы в терминах модели линейной комбинации атомных орбиталей, находятся два антисвязывающих электрона с параллельными спинами. По этой причине взаимодействие между этими электронами имеет характер отталкивания, достигающего минимальной величины, если электроны находятся во взаимно перпендикулярных плоскостях. Всего же на молекулярной πg-орбитали согласно принципу Паули может находиться не более четырех электронов, отличающихся друг от друга значением хотя бы одного из квантовых чисел me или ms [1]
Известны также подтвержденные экспериментально теоретические исследования, согласно которым ближайшие возбужденные (синглетные) состояния молекулы кислорода возникают в результате образования на внешней неполностью заполненной πg-орбитали молекулы неподеленной пары антисвязывающих электронов, т.е. пары электронов с антипараллельными спинами. По этой причине взаимодействие между этими электронами имеет характер притягивания, достигающего максимальной величины, если электроны находятся в одной плоскости.

Метастабильность синглетных состояний молекулы кислорода объясняют строгим запретом перехода в основное (стабильное) состояние посредством дипольного излучения. Иными словами переход из синглетного состояния в триплетное посредством дипольного излучения требует при электронном переходе конверсии спина возбужденного электрона, а вероятность этого процесса чрезвычайно мала.

Возбуждение молекулы кислорода в естественных условиях объясняется процедурой обмена электронами между молекулами метастабильного комплекса [3O2. 3O2] в результате поглощения этим комплексом одного фотона соответствующей энергии. При тушении возбужденного состояния обмен электронами между молекулами возбужденного метастабильного комплекса [1O2.1O2] сопровождается излучением одного фотона [2]
Нетрудно видеть, что обмен электронами между молекулами метастабильного комплекса является процессом статистического характера и по этой причине мало пригоден в качестве механизма практического способа получения синглетного кислорода. Для практических целей гораздо привлекательнее механизм, в основе которого лежит обмен электронами, происходящий посредством переноса молекулой кислорода электрона от донора к акцептору во время какого-либо восстановительно-окислительного процесса.

Наиболее близким по технической сущности к предлагаемому способу получения синглетного кислорода является способ, включающий абсорбцию газообразного кислорода жидким раствором, содержащим молекулы ферроцена (C5H5)2Fe, электрохимическое восстановление растворенного кислорода до супероксида O-2

, электрохимическое окисление молекул ферроцена до катионов [(C5H5)2Fe]+ и окисление последними супероксида O-2
до синглетного кислорода O2(1Δg), поглощаемого затем химической ловушкой [3]
К существенным недостаткам известного способа следует отнести хорошую растворимость ферроцена только в органических растворителях. В известном способе в качестве жидкого раствора был использован раствор ферроцена в ацетонитриле CH3CN, что при выводе генерируемого потока синглетного кислорода в газовую фазу неизбежно приведет к засорению последующих трактов лазера выходящими из жидкого раствора в процессе перехода подобной гетерогенной системы к равновесному состоянию частицами, являющимися потенциальными тушителями компонентов активной среды лазера. Подобное засорение снижает коэффициент полезного действия всей системы.

К недостаткам известного способа следует также отнести недостаточную стабильность жидкого раствора, так как входящий в его состав растворитель - ацетонитрил, если судить по положительному значению стандартной мольной энергии Гиббса
ΔG°= 100,4 кДж/моль,
соответствующей образованию этого вещества, должен понижать упомянутую характеристику жидкого раствора. К тому же ацетонитрил токсичен; предполагается, что предельно допустимая концентрация ацетонитрила в воздухе составляет 0,002% Кроме того, наличие в системе органических реагентов в контакте с кислородом должно существенно повысить взрыво- и пожароопасность системы.

При разработке предлагаемого способа решалась задача, связанная с исключением условий, приводящих к засорению генерируемого потока синглетного кислорода частицами потенциальными тушителями компонентов активной среды лазера, и поиском условий, обеспечивающих стабильное состояние электролита в процессе работы электрохимической системы.

Сущность изобретения заключается в том, что в способе получения синглетного кислорода, включающем абсорбцию газообразного кислорода электролитом, электрохимическое восстановление растворенного кислорода до супероксида O-2

и окисление последнего до синглетного кислорода O2(1Δg), выводимого затем в приемник, в качестве электролита используют дистиллированную воду, окисление супероксида O-2
производят электрохимическим путем на аноде, а в качестве приемника используют газовую фазу над поверхностью электролита, противоположной поверхности, абсорбирующей газообразный кислород.

Действительно внешняя молекулярная πg-орбиталь супероксида O-2

содержит три антисвязывающих электрона, два из которых образуют неподеленную пару и по этой причине более прочно связаны с остальной частью молекулы, чем третий неспаренный электрон. Прочность связи этого последнего электрона определяется сродством молекулы кислорода к электрону:
O-2
+0,44 эВ _→ O2+e-.
Если от супероксида O2- оторвать каким-либо способом, например путем электрохимического окисления на аноде, этот слабосвязанный электрон, то образовавшаяся после этого молекула кислорода будет находиться в синглетном, т. е. возбужденном, состоянии, так как суммарный спин неподеленной пары электронов равен нулю.

Величина сродства молекулы кислорода к электрону свидетельствует о том, что равновесный потенциал окислительной электродной полуреакции
O-2

_→ O2+e- Φ°= -0,44 В
примерно в 2,7 раза ниже равновесного потенциала окислительно-восстановительной электродной полуреакции
O2+4H++4e- ⇄ 2H2O Φ°= +1,229 В,
что обеспечит режим работы электрохимической системы в области, соответствующей стабильному состоянию электролита.

Технический результат, получаемый предложенной совокупностью признаков и выражающийся в генерации потока синглетного кислорода O2(1Δg) без макроскопических количеств примесей потенциальных тушителей компонентов активной среды лазера (за исключением паров воды), а также в обеспечении возможности работы электрохимической системы в режиме, соответствующем стабильному состоянию электролита, не достигнут ни одним из выявленных в процессе анализа современного уровня техники известных способов получения синглетного кислорода для химических иодно-кислородных лазеров непрерывного действия.

Предлагаемый способ получения синглетного кислорода реализуют следующим образом.

К поверхности электролита дистиллированной воды со стороны размещения катода подводят газообразный кислород, который после абсорбции электролитом восстанавливают на катоде до супероксида O-2

. Эти анионы кислорода под действием электрического поля перемещаются к аноду, где их окисляют до синглетного кислорода O2(1Δg). Синглетный кислород посредством концентрационной диффузии выходит в газовую фазу через поверхность электролита, противоположную поверхности, абсорбирующей газообразный кислород.

Использование предлагаемого способа получения синглетного кислорода позволит создать химический иодно-кислородный лазер непрерывного действия многоцелевого назначения в наиболее экономичном на данный момент исполнении с точки зрения технологии изготовления, эксплуатации и обеспечения экологической чистоты.

Похожие патенты RU2090966C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ СИНГЛЕТНОГО КИСЛОРОДА 1994
  • Зимин В.И.
RU2076416C1
СПОСОБ ПОЛУЧЕНИЯ СИНГЛЕТНОГО КИСЛОРОДА 1993
  • Зимин В.И.
RU2069931C1
ГЕНЕРАТОР СИНГЛЕТНОГО КИСЛОРОДА 1995
  • Зимин В.И.
RU2091938C1
СПОСОБ ПОЛУЧЕНИЯ СИНГЛЕТНОГО КИСЛОРОДА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1995
  • Выскубенко Б.А.
  • Герасименко В.Ф.
  • Круковский И.М.
RU2091939C1
СПОСОБ ДЛЯ ПРИГОТОВЛЕНИЯ И ОХЛАЖДЕНИЯ РАСТВОРОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2000
  • Глушихина Е.В.
  • Калиновский В.В.
  • Коновалов В.В.
  • Николаев В.Д.
RU2185234C2
ТОПЛИВНЫЙ ЭЛЕМЕНТ 1998
  • Давыдов И.А.
  • Кондрашенко А.В.
  • Давыдов А.И.
RU2145751C1
СПОСОБ ПОЛУЧЕНИЯ АКТИВНОЙ СРЕДЫ В ГАЗОВОМ ЛАЗЕРЕ 2001
  • Дубинов А.Е.
  • Лажинцев Б.В.
  • Макарова Н.Н.
  • Селемир В.Д.
RU2216083C2
СПОСОБ ОСУЩЕСТВЛЕНИЯ ГЕНЕРАЦИИ ЭЛЕКТРОМАГНИТНЫХ ВОЛН В ДВУХПУЧКОВОЙ ЭЛЕКТРОННОЙ СВЕРХВЫСОКОЧАСТОТНОЙ ЛАМПЕ 2001
  • Дубинов А.Е.
RU2189661C1
СПОСОБ ПОЛУЧЕНИЯ СИНГЛЕТНОГО КИСЛОРОДА И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2002
  • Бакшин В.В.
  • Выскубенко Б.А.
  • Горбачева Е.В.
  • Груздев С.К.
  • Ильин С.П.
  • Колобянин Ю.В.
RU2240281C2
СПОСОБ ПОЛУЧЕНИЯ ПЕНОПОЛИУРЕТАНА 1994
  • Дорофеев А.А.
  • Терещенко Ф.Л.
RU2129127C1

Реферат патента 1997 года СПОСОБ ПОЛУЧЕНИЯ СИНГЛЕТНОГО КИСЛОРОДА

Использование: в лазерной технике. Сущность изобретения: для решения технической задачи, связанной с исключением условий, приводящих к засорению генерируемого потока синглетного кислорода потенциальными тушителями компонентов активной среды лазера, и с поиском условий, обеспечивающих режим работы электрохимической системы, соответствующий стабильному состоянию электролита, в способе получения синглетного кислорода, включающем абсорбцию газообразного кислорода электролитом, электрохимическое восстановление растворенного кислорода до супероксида O-2

и окисление последнего до синглетного кислорода O2(1Δg), выводимого затем в приемник, в качестве электролита используют дистиллированную воду, окисление супероксида O-2
производят электрохимическим путем на аноде, а в качестве приемника используют газовую фазу над поверхностью электролита, противоположной поверхности, абсорбирующей газообразный кислород.

Формула изобретения RU 2 090 966 C1

Способ получения синглетного кислорода преимущественно для химического иодно-кислородного лазера непрерывного действия, включающий абсорбцию газообразного кислорода электролитом, электрохимическое восстановление растворенного кислорода до супероксида O-2

и окисление последнего до синглетного кислорода O2(1Δд), выводимого затем в приемник, отличающийся тем, что в качестве электролита используют дистиллированную воду, окисление супероксида O-2
производят электрохимическим путем на аноде, а в качестве приемника используют газовую фазу над поверхностью электролита противоположной поверхности, абсорбирующей газообразный кислород.

Документы, цитированные в отчете о поиске Патент 1997 года RU2090966C1

Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Г.Герцберг
Спектры и строение двухатомных молекул
- М.: ИЛ, 1949
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
M.Kasha et al
Organic Chemistry
v
Приспособление с иглой для прочистки кухонь типа "Примус" 1923
  • Копейкин И.Ф.
SU40A1
Singlet Oxygen Academic Press
Способ восстановления хромовой кислоты, в частности для получения хромовых квасцов 1921
  • Ланговой С.П.
  • Рейзнек А.Р.
SU7A1
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1
E.A.Mayeda et al
J
Amer
Chem
Soc
Способ изготовления электрических сопротивлений посредством осаждения слоя проводника на поверхности изолятора 1921
  • Андреев Н.Н.
  • Ландсберг Г.С.
SU19A1
СПОСОБ ОПРЕДЕЛЕНИЯ УДЕЛЬНОГО ВЕСА ТЕРТЫХ КРАСОК, ПАСТ И ЗАГУСТОК 1927
  • Чернов В.В.
SU6223A1

RU 2 090 966 C1

Авторы

Зимин В.И.

Даты

1997-09-20Публикация

1994-09-29Подача