Изобретение относится к лазерной технике, а именно к конструкции мощных газовых лазеров.
Известен прокачной газовый лазер с замкнутым газодинамическим контуром [1] в котором рабочий газ циркулирует в контуре, образованном областью возбуждения, двумя холодильниками и двумя вентиляторами.
Наиболее близким техническим решением, принятым за прототип, является газовый лазер [2] содержащий резонатор, газоразрядную камеру, криогенный теплообменник и вентилятор, включенные в газодинамический контур.
Предлагаемый газовый лазер отличается от известных простотой и компактностью конструктивных решений, а главное повышенным КПД за счет того, что время оборота газа в газодинамическом контуре меньше времени релаксации энергии возбуждения рабочей молекулы (в данном случае молекулы СО), а следовательно, для газового разряда требуется меньшее количество электроэнергии.
Этот эффект достигается благодаря тому, что предлагаемый газовый лазер снабжен газодинамической трубой, в которой размещена газоразрядная камера, выполненная в виде газоразрядных трубок, а газодинамический контур имеет Т-образную форму, горизонтальную часть которого образуют газодинамическая труба с газоразрядной камерой и зеркала оптического резонатора, размещенные на ее торцах, а вертикальную часть образуют криогеннный теплообменник, выполненный в виде полового цилиндра с вентилятором в его свободном торце, и в центральную полость которого помещен канал подачи рабочего газа на вход вентилятора, причем постоянная времени оборота газа τоб. в газодинамическом контуре равна
τоб. = 0,1 - 0,5 τрел.
где τрел. время релаксации энергии возбуждения рабочей молекулы на чертеже приведена конструктивная схема газового лазера.
Конструкция газового лазера имеет Т-образную форму, горизонтальную часть которого образует газодинамическая труба 1, внутри которой размещены трубки газоразрядной камеры 2. С обоих концов газоразрядной камеры 2 установлены зеркала оптического резонатора 3, причем одно из них полупрозрачное для лазерного излучения. Вертикальная часть состоит из цилиндрического криогенного теплообменника 4, центральную полость которого образует труба 5, соединенная одним концом с газоразрядной камерой 2, другой конец трубы соединен с входом вентилятора 6. Теплообменник 4 потребляет хладагент, например жидкий азот, от внешнего источника и обеспечивает охлаждение рабочего газа, подаваемого по газодинамической трубе 1 в газоразрядную камеру 2, где происходит его накачка в газовом разряде (см. чертеж).
Газовый лазер функционирует следующим образом.
Газадинамический контур наполняется рабочей смесью, содержащей молекулу с характерным временем релаксации энергии возбуждения τрел. в криогенный теплообменник подается хладагент. Затем включается вентилятор 6, а к газоразрядным трубкам газоразрядной камеры 2 подается электроэнергия. В результате возникает газовый разряд. Газодинамический контур обеспечивает непрерывную смену газа в газоразрядных трубках. Оптический резонатор, образованный зеркалами 3, формирует лазерное излучение, выходящее вовне через полупрозрачное зеркало.
В газоразрядной трубке происходит трубке происходит возбуждение рабочей молекулы (например, СО). Часть энергии возбуждения излучается, а оставшаяся часть релаксирует в тепло, но так как время релаксации больше времени оборота газа в газодинамическом контуре τоб. то к моменту полного оборота газа рабочие молекулы сохраняют часть энергии возбуждения, а следовательно, для накачки требуется меньшее количество электроэнергии, что повышает КПД лазера.
Предлагаемая конструкция обеспечивает выполнение требования
τоб. = 0,1 - 0,5 τрел.,
где τоб постоянная времени оборота газа в газодинамическом контуре;
τрел. время релаксации энергии возбуждения рабочей молекулы.
Данное предложение позволяет повысить КПД по сравнению известными до двух раз.
название | год | авторы | номер документа |
---|---|---|---|
ЭЛЕКТРОРАЗРЯДНЫЙ ГАЗОВЫЙ ЛАЗЕР | 1991 |
|
RU2029420C1 |
ПРОТОЧНЫЙ ГАЗОВЫЙ ЛАЗЕР | 2004 |
|
RU2270499C2 |
ЭЛЕКТРОГАЗОДИНАМИЧЕСКИЙ СО-ЛАЗЕР | 1993 |
|
RU2065240C1 |
ГАЗОВЫЙ ЛАЗЕР С ВОЗБУЖДЕНИЕМ ВЫСОКОЧАСТОТНЫМ РАЗРЯДОМ | 2009 |
|
RU2411619C1 |
СПОСОБ ПОЛУЧЕНИЯ ИМПУЛЬСНО-ПЕРИОДИЧЕСКОГО АВТОМОДУЛИРОВАННОГО ЛАЗЕРНОГО ИЗЛУЧЕНИЯ | 1994 |
|
RU2080717C1 |
КИСЛОРОД-ЙОДНЫЙ ЛАЗЕР | 2006 |
|
RU2321118C2 |
БОЕВОЙ ЛАЗЕР | 2011 |
|
RU2482581C2 |
БОЕВОЙ ЛАЗЕР | 2011 |
|
RU2481544C1 |
СПОСОБ СОЗДАНИЯ ИНВЕРСНОЙ НАСЕЛЕННОСТИ В ГАЗОДИНАМИЧЕСКОМ CO-ЛАЗЕРЕ ПРИ НИЗКОЙ ТЕМПЕРАТУРЕ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1999 |
|
RU2170998C1 |
ЭЛЕКТРОГАЗОДИНАМИЧЕСКИЙ СО-ЛАЗЕР | 1993 |
|
RU2065241C1 |
Использование: изобретение относится к лазерной технике. Сущность: конструктивно простой и компактный имеющий газодинамический контур Т-образной формы, электроразрядный газовый лазер обладает повышенным КПД, который достигается тем, что характерное время оборота рабочего газа в газодинамическом контуре меньше характерного времени релаксации энергии возбуждения рабочей молекулы лазера, например СО-лазер, что снижает потребление электроэнергии в объеме газового разряда и повышает КПД до 2 раз в сравнении с известными газовыми лазерами. 1 ил.
Газовый лазер, содержащий оптический резонатор, газоразрядную камеру, криогенный теплообменник, включенный в газодинамический контур, отличающийся тем, что он снабжен газодинамической трубой, в которой размещена газоразрядная камера, выполненная в виде газоразрядных трубок, а газодинамический контур имеет Т-образную форму, горизонтальную часть которого образуют газодинамическая труба с газоразрядной камерой и зеркала оптического резонатора, размещенные на ее торцах, а вертикальную часть образуют криогенный теплообменник, выполненный в виде полого цилиндра с вентилятором в его свободном торце и в центральную полость которого помещен канал подачи газа на вход вентилятора, причем постоянная времени оборота газа τоб. в газодинамическом контуре равна
τоб. = 0,1 - 0,5 τрел.,
где τрел.- время релаксации энергии возбуждения рабочей молекулы.
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Устройство для сортировки каменного угля | 1921 |
|
SU61A1 |
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Shunichi Sato et al | |||
SPTE, v.1397, Eighth International on Gas Flow and Chemical Lasers | |||
Способ приготовления консистентных мазей | 1919 |
|
SU1990A1 |
Способ уравновешивания движущихся масс поршневых машин | 1925 |
|
SU427A1 |
Авторы
Даты
1997-12-10—Публикация
1995-08-17—Подача