ПРЕОБРАЗОВАТЕЛЬ СВЕТОВОЙ ЭНЕРГИИ В ЭЛЕКТРИЧЕСКУЮ НА ОСНОВЕ P-N-ПЕРЕХОДА С ПОВЕРХНОСТНЫМ ИЗОТИПНЫМ ГЕТЕРОПЕРЕХОДОМ Российский патент 1997 года по МПК H01L31/06 

Описание патента на изобретение RU2099818C1

Изобретение относится к средствам для преобразования световой энергии в электрическую.

Предшествующий уровень техники.

Известно фотовольтаическое устройство по патентной заявке ФРГ [1] содержащее подложку с проводящим электродом и нанесенными на нее последовательно тремя слоями полупроводникового материала различных типов проводимости (p-i-n-структура) и второй электрод. При этом подложка и ближайшие к ней первый и второй полупроводниковые слои выполнены с возможностью облучения падающим на устройство светом наиболее удаленного третьего слоя. Одним из слоев данного устройства может служить аморфный карбид кремния a-SixC1-x:H. Описанные конструкция и выбор материала слоев способствуют расширению оптической полосы устройства и повышению его энергетической эффективности.

Недостатком данного устройства является необходимость формирования дополнительного антиотражающего покрытия с целью уменьшения коэффициента отражения от поверхности. Кроме того, для данного устройства характерно несовершенство границ между слоями различных полупроводников и образование вследствие этого пограничных состояний, что ограничивает максимальный ток короткого замыкания вследствие высокой скорости поверхностной рекомбинации на границах раздела.

Известен также солнечный элемент, содержащий гетеропереход Si p-типа и слой ITO (смесь In2O3 и SnO3 с шириной запрещенной зоны Eg 3,7 эВ) n-типа с двумя электродами [2] ITO в данном устройстве играет одновременно роль как антиотражающего, так и хорошо проводящего слоя, собирающего электроны.

Недостатком данного устройства является то, что слой ITO не поглощает солнечного излучения и поэтому не вносит вклада в фототок. Поэтому данное устройство работает в узком спектральном диапазоне, характерном для кремниевых устройств. Кроме того, вследствие образования на границе раздела слоев Si-ITO пленки SiO2, создающей высокий потенциальный барьер и ограничивающей поток носителей заряда, происходит уменьшение максимального тока короткого замыкания.

Известен также солнечный элемент на основе p-n-гомоперехода (на основе GaAs) с добавленным к нему слоем полупроводника с большей шириной запрещенной зоны (Ga1-xAlxAs) [3] Примером может служить структура p-Ga1-xAlxAs/p-GaAs/n-GaAs. Широкозонный полупроводник используется в качестве контакта, пропускающего фотоны с энергией меньше ширины своей запрещенной зоны (эффект окна). Данная структура обладает достаточно высокой эффективностью собирания фотогенерированных носителей заряда и расширенным в область коротких длин волн спектральным откликом.

Недостатком данного устройства является необходимость формирования дополнительного антиотражающего покрытия, так как слой Ga1-xAlxAs не выполняет этой функции по отношению к слоям GaAs. Кроме того, основным фотогенерационным слоем является слой GaAs, поэтому расширение спектрального отклика в коротковолновую часть спектра распространяется только для энергий приблизительно 2,3 эВ. Поэтому кванты света с энергией 2,3 эВ (которые в достаточном количестве присутствуют в солнечном излучении) не дают вклада в фототок.

Наиболее близко к предлагаемому устройство (на основе кристаллического кремния), содержащее p-n-переход, в котором слой n-типа имеет ступенчатое распределение примеси (структура n+-Si/n-Si/p-Si) [4] что приводит к существованию тянущего электрического поля. Это приводит к увеличению коэффициента собирания неосновных носителей в n-слое и понижению скорости поверхностной рекомбинации. Подобные элементы могут иметь высокую спектральную чувствительность в коротковолновой области спектра и низкое последовательное сопротивление.

Недостатками данного устройства являются узкий спектральный диапазон, характерный для преобразователей с постоянным значением ширины запрещенной зоны, и необходимость формирования на поверхности устройства антиотражающего покрытия.

Изобретение направлено на достижение результата, заключающегося в увеличении эффективности преобразования световой энергии в электрическую за счет расширения спектральной чувствительности в синюю часть видимого солнечного спектра, увеличение области, в которой происходит эффективное разделение фотогенерированных носителей, а также снижении последовательного сопротивления.

Увеличение эффективности преобразования световой энергии в электрическую энергию по сравнению с прототипом происходит по следующим причинам. В отличие от прототипа при создании в исходном полупроводниковом материале p-типа (далее слой П4) p-n-перехода n-область (слой П3) выполняется с однородным легированием с концентрацией порядка 1017 1018 см-3, а на поверхности П3 создается поверхностный изотипный n+-n-гетеропереход. Гетеропереход создается путем нанесения на слой П3 слоя П2 с концентрацией носителей заряда 1019-1020 см-3 и запрещенной зоной Eg2>Eg3, где Eg3 ширина запрещенной зоны слоя П3. При этом толщина слоя П3 выбирается такой, чтобы в нем создавалось тянущее электрическое поле. В результате общий уровень генерации электронно-дырочных пар в слое П3 выше, чем в прототипе, поскольку слой П2 имеет оптическую ширину запрещенной зоны больше, чем слои П3 и П4 и, следовательно, он прозрачен для квантов света, поглощаемых в этих слоях (эффект окна). В предлагаемом устройстве слой широкозонного полупроводника П2, образующий со слоем П3 n+-n-гетеропереход, является также генерационным, то есть в нем рождаются электронно-дырочные пары за счет поглощения квантов света с энергией E>Eg2 (Eg2 ширина запрещенной зоны слоя 2). Поэтому нанесение слоя П2 позволяет расширить в синюю область внутренний спектральный отклик преобразователя. Кроме того, слой П2 выбирается таким, чтобы он являлся антиотражающим покрытием к слою П3.

Таким образом, цель достигается тем, что в предлагаемом преобразователе в отличие от прототипа, тянущее электрическое поле в слое П3 создается путем формирования на поверхности структуры с p-n-переходом поверхностного n+-n-гетероперехода. Гетеропереход формируется путем нанесения сильнолегированного слоя n-типа (П2) на слой П3. При этом слой П2 является одновременно антиотражающим и фоточувствительным. Значение Eg2 слоя П2 больше, чем слоя n-типа (П3) и следующего p-типа (П4), но при этом находится в видимом диапазоне длин волн. То есть слой П2 прозрачен для фотонов с энергиями, значения которых находятся в области фоточувствительности слоя П3 и П4 (эффект окна). Благодаря этому генерация электронно-дырочных пар в слое П2 добавляется к генерации электронно-дырочных пар в слоях П3 и П4, что приводит к увеличению тока короткого замыкания. Более того спектральный отклик при поглощении квантов света с энергиями 2 эВ<E<Eg2 в кремнии также возрастет, так как генерация носителей будет происходить в поле пространственного заряда поверхностного гетероперехода. В целом предлагаемый преобразователь представляет собой структуру с внутренним p-n-переходом и поверхностным n-n+-гетеропереходом, в котором уровень легирования слоя П3 и его толщина подобраны таким образом, чтобы области пространственного заряда p-n-перехода и гетероперехода перекрывались. В качестве слоя П2 могут быть использованы соединения на основе твердых растворов элементов из II и VI групп таблицы Менделеева, например CdZnS, CdO, CdZnO, CdZnON и др.

Для достижения указанных целей слой n-типа (П3) должен иметь пониженную (по сравнению с традиционными преобразователями на p-n-переходах) концентрацию легирующей примеси. При этом концентрация легирующей примеси выбирается такой, чтобы области пространственного заряда поверхностного гетероперехода, образуемого слоями П2 и П3 и n-p-переходом (слои П3 и П4), перекрывались. То есть, создаются условия, когда слой П3 легирован донорной примесью, но в тоже время не имеет электронейтрального объема. Следовательно, ширина области пространственного заряда в предлагаемом преобразователе будет больше по сравнению с прототипом. Поэтому в n-слое (П3), также как и в слое p-типа (П4), будет происходить эффективное разделение носителей заряда, что увеличит ток короткого замыкания за счет уменьшения рекомбинационных потерь. Концентрацию легирующей примеси в слое кремния n-типа (слой П3), обеспечивающую перекрытие областей пространственного заряда поверхностного n+-n- гетероперехода и n-p-перехода, легко рассчитать. Если p-слой (П4) имеет удельное сопротивление 1 Ом•см (концентрация легирующей примеси 1016 см-3), а глубина залегания n-p-перехода составляет 0,5 мкм, то концентрация легирующей примеси в слое П3 должна составлять приблизительно 4•1016 см-3. При таком уровне легирования область пространственного заряда в слое n-типа со стороны n-p-перехода будет распространяться приблизительно на 0,25 мкм. Область пространственного заряда со стороны гетероперехода n+-n-будет распространяться в слой n-типа также на глубину приблизительно 0,25 мкм. Следовательно, произойдет перекрытие областей пространственного заряда. При меньшей глубине залегания n-p-перехода концентрация легирующей примеси может быть увеличена в несколько раз.

Важно отметить, что увеличение тока короткого замыкания достигается и при такой концентрации легирующей примеси, когда области пространственного заряда поверхностного n+-n- гетероперехода и p-n-перехода не перекрываются. В этом случае необходимо, чтобы длина диффузии неосновных носителей заряда в n-области была больше глубины залегания p-n-перехода. Тогда фотогенерированные носители, диффундируя в разные стороны, в любом случае попадают или в область пространственного заряда n-p-перехода, или в область поверхностного n+-n-перехода, где происходит их разделение.

Таким образом, в предлагаемом устройстве по сравнению с прототипом достигаются
больший ток короткого замыкания (Iкз) за счет более эффективного разделения электронно-дырочных пар в слое П3, уменьшения скорости поверхностной рекомбинации на границе раздела слоев П2 и П3, уменьшения коэффициента отражения, расширения в синюю область внутреннего спектрального отклика;
увеличение заполнения (FF) вследствие уменьшения последовательного сопротивления устройства за счет нанесения на поверхность слоя П3 сильнолегированного полупроводникового слоя П2;
увеличение напряжения холостого хода (Vxx) за счет дополнительной генерации электронно-дырочных пар в изотопном гетеропереходе n+-n (слои П2 и П3).

Лучший вариант осуществления изобретения.

Предлагаемый преобразователь световой энергии в электрическую в описываемом варианте реализован в виде структуры (фиг. 1), содержащей полупроводниковую подложку из кремния с дырочной проводимостью (слой 4), слой 3 из кремния с электронной проводимостью, сильнолегированный слой 2 на основе сплава соединений AIIBVI CdZnOxN1-x, электрод 5 - омический контакт со стороны слоя 4 и второй металлический электрод 1 со стороны слоя 2, выполненный в виде редкой сетки.

Все приведенные при раскрытии изобретения физические соображения подтверждены на конкретной структуре, соответствующей фиг. 1, где в качестве слоя 4 выступает подложка из кремния КДБ-1 с дырочной проводимостью толщиной 330 мкм, в которой методом диффузии сформирован слой 3 с электронной проводимостью. Глубина p-n-перехода приблизительно 0,5 мкм. Далее на поверхность сформированного p-n- перехода ионно-плазменным осаждением был нанесен слой 2 CdZnOxN1-x толщиной 50 нм, с удельным сопротивлением 1•10-3 Ом•см и шириной запрещенной зоны Eg2 2,5 эВ. Параметры CdZnOxN1-x были подобраны таким образом, чтобы данный слой являлся антиотражающим покрытием к кремнию, поглощал кванты света из диапазона, в котором внутренний квантовый выход в кремнии меньше 1, и обеспечивал перенос носителей заряда. К слою 4 был сделан омический контакт. Сверху на слой CdZnOxN1-x была нанесена металлическая коллекторная сетка с целью улучшения сбора электрического тока.

На фиг. 2 представлены BAX исследуемой структуры с площадью 0,62 см2 при освещении светом, соответствующем интенсивности стандарта АМ1 (0,1 Вт/см2). Видно, что Vxx 0,512 В, Iкз 44 мА/см2 FF 0,73 (кривая 2). Эффективность преобразования структуры 17% Параметры p-n-перехода без слоя 2 были следующими: Vxx 0,501 В, Iкз 33 мА/см2 FF 0,66 (кривая 1). Эффективность преобразования 11%
При изготовлении предлагаемого преобразователя слой 2 на основе соединений типа AIIBVI, например CdZnOxN1-x, может быть получен вакуумными ионно-плазменными методами, например магнетронным распылением Cd1-xZnx мишени в смеси газов, содержащей кислород (например, O2+N2, O2+Ar и т.д.). Осаждение может проводиться как на нагреваемую, так и на охлаждаемую подложку. Преобразователь может быть применен в составе источника электрической энергии, в том числе, в качестве составной части другого, более сложного устройства, преобразующего энергию солнечной радиации и иных источников светового излучения.

Описание предложенного устройства иллюстрируется следующими чертежами:
На фиг. 1 схематически изображена конструкция устройства; на фиг. 2 - энергетическая зонная диаграмма предлагаемого устройства, где Ec - энергия дна зоны проводимости, Ev энергия потолка валентной зоны, EF энергия уровня Ферми; на фиг. 3 вольт-амперные характеристики преобразователя на основе p-n-перехода до создания поверхностного гетероперехода (кривая 1) и лучшего варианта осуществления предлагаемого устройства (кривая 2) при освещении солнечным светом с интенсивностью 0,1 Вт/см2; на фиг. 4 спектральная зависимость коэффициента поглощения (А) слоя CdZnOxN1-x; на фиг. 5 коэффициента отражения света (R) от предлагаемого устройства в зависимости от длины волны падающего света.

Список литературы.

1. Заявка на патент N 4010302, кл. H 01 L 31/0376, опубл. 30.03.90.

2. Sites J.R. Current Mechananisms and Barrier Height in ITO / Si Heterojunctions, Inst. Phys. Conf. Ser. 43, Chap. 22 (1979).

3. С.Зи. Физика полупроводниковых приборов. Москва: Мир, 1984, том 2.

4. И. П.Гаврилова, В.М.Евдокимов, М.М.Колтун, В.П.Матвеев, Е.С.Макаров, Физика и техника полупроводников, т.8, в.1, 1974, с.119-124.

Похожие патенты RU2099818C1

название год авторы номер документа
ПРЕОБРАЗОВАТЕЛЬ СВЕТОВОЙ ЭНЕРГИИ В ЭЛЕКТРИЧЕСКУЮ НА ГОРЯЧИХ БАЛЛИСТИЧЕСКИХ НОСИТЕЛЯХ 1995
  • Малов Ю.А.
  • Баранов А.М.
  • Терешин С.А.
  • Зарецкий Д.Ф.
RU2137257C1
ФОТОДЕТЕКТОР ЛАЗЕРНОГО ИЗЛУЧЕНИЯ 2023
  • Андреев Вячеслав Михайлович
  • Калюжный Николай Александрович
  • Минтаиров Сергей Александрович
  • Салий Роман Александрович
  • Малевская Александра Вячеславовна
RU2806342C1
ФОТОВОЛЬТАИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ 1992
  • Сычик Василий Андреевич[By]
  • Бреднев Александр Викторович[By]
RU2080690C1
МНОГОКАСКАДНЫЙ ЛАВИННЫЙ ФОТОДЕТЕКТОР 2008
  • Патрашин Александр Иванович
RU2386192C1
ФОТОДИОДНЫЙ ПРИЕМНИК ИНФРАКРАСНОГО ИЗЛУЧЕНИЯ 2006
  • Васильев Владимир Васильевич
  • Варавин Василий Семенович
  • Дворецкий Сергей Алексеевич
  • Михайлов Николай Николаевич
  • Сусляков Александр Олегович
  • Сидоров Юрий Георгиевич
  • Асеев Александр Леонидович
RU2310949C1
МНОГОПЕРЕХОДНЫЙ ПРЕОБРАЗОВАТЕЛЬ 2010
  • Андреев Вячеслав Михайлович
  • Калюжный Николай Александрович
  • Лантратов Владимир Михайлович
  • Минтаиров Сергей Александрович
  • Гудовских Александр Сергеевич
RU2442242C1
ФОТОЭЛЕКТРИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ 2015
  • Андреев Вячеслав Михайлович
  • Левин Роман Викторович
  • Пушный Борис Васильевич
RU2605839C2
СПОСОБ ПОЛУЧЕНИЯ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ НА ОСНОВЕ ПОЛУПРОВОДНИКОВОГО ЭЛЕКТРОННОГО КАТАЛИТИЧЕСКОГО ЭЛЕМЕНТА 2008
  • Давыдов Андрей Анатольевич
  • Морозов Александр Васильевич
  • Николаев Николай Сергеевич
  • Пархута Михаил Анатольевич
  • Сапелкин Валерий Сергеевич
  • Федоров Евгений Николаевич
  • Фролов Вениамин Петрович
RU2380792C1
ЛАЗЕР-ТИРИСТОР 2013
  • Слипченко Сергей Олегович
  • Подоскин Александр Александрович
  • Рожков Александр Владимирович
  • Горбатюк Андрей Васильевич
  • Тарасов Илья Сергеевич
  • Пихтин Никита Александрович
  • Симаков Владимир Александрович
  • Коняев Вадим Павлович
  • Лобинцов Александр Викторович
  • Курнявко Юрий Владимирович
  • Мармалюк Александр Анатольевич
  • Ладугин Максим Анатольевич
RU2557359C2
ЛАЗЕР-ТИРИСТОР 2019
  • Слипченко Сергей Олегович
  • Пихтин Никита Александрович
  • Подоскин Александр Александрович
  • Симаков Владимир Александрович
  • Коняев Вадим Павлович
  • Кричевский Виктор Викторович
  • Лобинцов Александр Викторович
  • Курнявко Юрий Владимирович
  • Мармалюк Александр Анатольевич
  • Ладугин Максим Анатольевич
  • Багаев Тимур Анатольевич
RU2724244C1

Иллюстрации к изобретению RU 2 099 818 C1

Реферат патента 1997 года ПРЕОБРАЗОВАТЕЛЬ СВЕТОВОЙ ЭНЕРГИИ В ЭЛЕКТРИЧЕСКУЮ НА ОСНОВЕ P-N-ПЕРЕХОДА С ПОВЕРХНОСТНЫМ ИЗОТИПНЫМ ГЕТЕРОПЕРЕХОДОМ

Изобретение относится к средствам для преобразования световой энергии в электрическую. Устройство состоит из крайних металлических электродов 1 и 5, полупроводникового слоя 4 первого типа проводимости, полупроводникового слоя 3 второго, противоположного первому, типа проводимости и слоя 2 широкозонного и сильнолегированного по отношению к слоям 3 и 4 полупроводника второго типа проводимости, образующего поверхностный изотипный гетеропереход со слоем 3. Металлический электрод 1 со стороны слоя 2 выполнен в виде редкой сетки. 3 з.п. ф-лы, 5 ил.

Формула изобретения RU 2 099 818 C1

1. Преобразователь световой энергии в электрическую, содержащий лицевой и тыльный металлические электроды, заключенный между ними р-n-переход, состоящий из полупроводникового слоя первого типа проводимости и полупроводникового слоя второго противоположного первому типа проводимости, отличающийся тем, что между полупроводниковым слоем второго типа и лицевым электродом размещен слой широкозонного и сильнолегированного по отношению к слоям первого и второго типа проводимости полупроводника второго типа проводимости, образующий поверхностный изотипный гетеропереход с полупроводниковым слоем второго типа проводимости и при этом являющийся одновременно:
антиотражающим покрытием по отношению к полупроводниковому слою второго типа проводимости;
собирающим носители заряда со всей поверхности преобразователя;
генерирующим электрон-дырочные пары за счет поглощения света в синем диапазоне видимого солнечного спектра.
2. Преобразователь по п.1, отличающийся тем, что уровень легирования и толщина полупроводникового слоя второго типа проводимости выбираются такими, чтобы области пространственного заряда р-n-перехода и поверхностного изотипного гетероперехода перекрывались. 3. Преобразователь по п.1, отличающийся тем, что полупроводниковые слои первого и второго типа проводимости выполнены из полупроводников с разной запрещенной зоной. 4. Преобразователь по п.1, отличающийся тем, что слой широкозонного полупроводника выполнен из материала, принадлежащего к группе AIIBVI, включающей CdSnO, CdZnOx N1-x, CdO, CdS, CdTl.

Документы, цитированные в отчете о поиске Патент 1997 года RU2099818C1

Зи С
Физика полупроводниковых приборов
- М.: Мир, 1984, т.2, с
Способ пропитывания дерева 1925
  • Ф. Петерс
SU418A1
Гаврилова И.П
и др
Физика и техника полупроводников
- Л.: Наука, 1974, т.8, вып.1, с.119 - 124.

RU 2 099 818 C1

Авторы

Вальднер Вадим Олегович

Терешин Сергей Анатольевич

Малов Юрий Анатольевич

Баранов Александр Михайлович

Даты

1997-12-20Публикация

1996-04-11Подача