СПОСОБ ПОДГОТОВКИ ПАЛЛАДИЕВОГО КАТАЛИЗАТОРА ДЛЯ СИНТЕЗА ЭТИЛОВОГО ЭФИРА 10-(2,3,4-ТРИМЕТОКСИ-6-МЕТИЛФЕНИЛ) ДЕКАНОВОЙ КИСЛОТЫ Российский патент 1998 года по МПК B01J23/44 B01J37/34 

Описание патента на изобретение RU2102136C1

Изобретение относится к способам активации катализаторов, используемых в процессах синтеза полупроводников лекарственных средств и витаминов.

Известно, что активацию катализаторов чаще всего осуществляют термическими методами, что приводит зачастую к нарушению кристаллической структуры или физическому разрушению катализатора. Известен метод активации "свежих" катализаторов, а также восстановления активности утомленных катализаторов путем их обработки водной культурой, содержащей бактерии, например бактерии, восстанавливающие сульфаты, окисляющие сульфиды о окисляющие железо. Катализатор при этом можно пропитывать различными методами, в том числе путем одновременного нанесения активной фазы катализатора на носитель и активации катализатора бактериями, находящимися вместе с активной фазой катализатора в разбавленном пропиточном растворе. После удаления культуры в случае необходимости катализаторы нагревают до температуры 400- 500oC (Авт.св. СССР N 190288, кл. B 01 J 37/34).

Недостатками этого метода является то, что, во-первых, он не позволяет полностью от термической обработки в процессе подготовки катализатора, во-вторых, требует для своего осуществления совмещения микробиологических и химических стадий, что приводит к усложнению аппаратурного обеспечения.

Наиболее близким по технической сущности является случай обработки платиновой (Pt) и палладиевой (Pd) черни для последующего гидрирования алкенов, окисления этанола. Pt чернь произведенная в присутствии ультразвука показала увеличение поверхностной площади и магнитной чувствительности. Наиболее активная Pt чернь получается при частоте обработки 3 МГц T.J. Mason - London and N.-Y. 1990, p.50).

Недостатком этого метода является то, что ультразвуковой обработке подвергается не имеющий носителя катализатор. Это позволяет применять мощный ультразвук (свыше 1 Вт/см2), что приводит к измельчению катализатора и частично за счет этого к повышению активности. Использование такого ультразвукового воздействия для катализатора, нанесенного на мягкий углеродный носитель, невозможно, так как приводит к его разрушению.

Задачей, решаемой при использовании предлагаемого изобретения, является улучшение качеств "свежего" катализатора.

Техническим результат изобретения улучшение характеристик катализатора, выражающееся в повышении его активности в процессе получения этилового эфира 10-(2,3,5-триметокси-6-метилфенил)декановой кислоты.

Технический результат достигается тем, что в способе подготовки палладиевого катализатора на углеродном носителе для процесса синтеза этилового эфира 10-(2,3,4-триметокси-6-метилфенил)декановой кислоты, включающем воздействие ультразвуком с частотой 22 кГц, при этом используют ультразвук с интенсивностью воздействия 0,1- 3 Вт/см2 в течение 5-60 с на катализатор, помещенный в раствор. В качестве катализатора используют палладиевый катализатор, нанесенный на "Сибунит". Этот палладиевый катализатор мелкодисперсный (с гранулометрическим составом от 15 до 70 мкм), он имеет темно-серый цвет. Для проведения ультразвуковой обработки используется ультразвуковой диспергатор УЗДН А. Ультразвуковое воздействие на подготавливаемый для процесса гидрирования этилового эфира 9-(2,3,4- триметокси-6-метилбензоил)нонановой кислоты катализатор проводится с частотой колебаний 20-22 кГц и интенсивностью 0,1-3 Вт/см2 в течение 5-60 с, причем весь процесс проводится с применением конической насадки ультразвукового пьезоэлектрического излучателя, при этом катализатор находится в химическом стаканчике в изопропанольном растворе серной кислоты (3,8 моль/м3). При отклонении частоты в меньшую сторону происходит выход из зоны ультразвуковых колебаний, а при отклонении в большую сторону по частоте, так же, как и при отклонении в меньшую сторону интенсивности ультразвукового воздействия, не удается достичь эффекта активации. При отклонении интенсивности ультразвука в большую сторону происходит разрушение катализатора и значительное снижение его активности. Применение цилиндрической насадки ультразвукового излучателя приводит к изменению структуры акустического поля. В измененном акустическом поле также возможно проведение процесса подготовки катализатора, однако использование цилиндрической насадки приводит к значительным потерям катализатора при его перенесении из насадки в реактор, что невыгодно из-за высокой стоимости палладия. Кроме того, дальнейшее увеличение времени ультразвуковой обработки делает невозможным проведение эффективной активации, что выражается в низкой приведенной скорости получения этилового эфира 10-(2,3,4-триметокси-6-метилфенил)декановой кислоты с использованием данного катализатора.

Подготовка с целью активации необработанного палладиевого катализатора, нанесенного на углеродный носитель "Сибунит", для процесса гидрирования этилового эфира 9-(2,3,4-триметокси-6-метилбензоил)нонановой кислоты до этилового эфира 10-(2,3,4-триметокси-6-метилфенил)декановой кислоты с помощью ультразвукового воздействия с интенсивностью 0,1-3 Вт/см2 и временем обработки 5-60 с в изопропанольном растворе серной кислоты (3,8 моль/м3) с использованием конической насадки ультразвукового излучателя является новым по сравнению с прототипом.

Под воздействием ультразвуковых колебаний происходит более равномерно распределение палладия по поверхности, что, по-видимому, способствует формированию большего числа активных центров. Кроме того, по данным РФЭС-спектрокопии ультразвуковое воздействие на катализатор приводит к накоплению Pd(II), что также увеличивает активность.

Для пояснения способа подготовки необработанного катализатора Pd/"Сибунит" с помощью ультразвуковой обработки приведены чертежи, где на фиг.1 изображена ультразвуковая установка (общий вид), на фиг.2 представлено изменение гранулометрического состава катализатора после ультразвукового воздействия. Этот рисунок подтверждает, что ультразвуковая обработка катализатора с интенсивностью 0,1-3 Вт/см2 и временем обработки 5 60 с не приводит к существенному изменению гранулометрического состава катализатора, а значит к его разрушению. На фиг.3 приведены зависимости выхода продукта реакции гидрирования от изменения интенсивности ультразвуковго воздействия.

Лучший вариант осуществления изобретения
Для проведения процесса гидрирования этилового эфира 9-(2,3,4-триметокси-6-метилбензоил)нонановой кислоты до этилового эфира 10-(2,3,4-триметокси-6-метилфенил)декановой кислоты используют палладиевый катализатор (темно-серого цвета), нанесенный на углеродный носитель "Сибунит". Подготовка этого катализатора с целью повышения его активности осуществляется в ультразвуковом поле.

Ультразвуковая установка состоит из ультразвукового генератора 1 (УЗДН А), соединенного кабелем 2 с ультразвуковом излучателем 3. На ультразвуковом излучателе 3 устанавливают коническую насадку 4, которую погружают в химический стаканчик 5 с катализатором, находящимся в изопропанольном растворе серной кислоты (3,8 моль/м3).

Обработка производится следующим образом: настраивается ультразвуковой генератор 1 по времени и по интенсивности ультразвукового воздействия, навеску катализатора (0,5 г) насыпают в химический стаканчик 5 и заливают 10 мл изопропанольного раствора серной кислоты.

Результаты регенерации катализатора приведены в табл. 1 и на фиг. 3.

Предлагаемый способ регенерации реализуется на промышленно выпускаемом ультразвуковом генераторе, процесс проходит быстро и дает хорошие результаты.

Похожие патенты RU2102136C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ЭТИЛОВОГО ЭФИРА 10-(2,3,4-ТРИМЕТОКСИ-6-МЕТИЛФЕНИЛ)ДЕКАНОВОЙ КИСЛОТЫ 1997
  • Сульман Эсфирь Михайловна
  • Шкилева Ирина Павловна
RU2118637C1
СПОСОБ АКТИВАЦИИ ПАЛЛАДИЙСОДЕРЖАЩИХ ПОЛИМЕРНЫХ КАТАЛИЗАТОРОВ ГИДРИРОВАНИЯ 2002
  • Сульман М.Г.
  • Пирог Д.Н.
  • Матвеева В.Г.
  • Сульман Э.М.
RU2220770C1
СПОСОБ ПОЛУЧЕНИЯ ЭТИЛОВОГО ЭФИРА 10-(2,3,4-ТРИМЕТОКСИ-6-МЕТИЛФЕНИЛ) ДЕКАНОВОЙ КИСЛОТЫ 2003
  • Сульман Э.М.
  • Шкилева И.П.
RU2233833C1
СПОСОБ РЕГЕНЕРАЦИИ ПАЛЛАДИЕВОГО КАТАЛИЗАТОРА ГИДРИРОВАНИЯ 1994
  • Сульман Э.М.
  • Сульман М.Г.
  • Матвеева В.Г.
  • Санников О.Б.
  • Сидоров А.И.
  • Блинов Б.Н.
RU2080921C1
СПОСОБ ПОЛУЧЕНИЯ ЛИНАЛООЛА 1997
  • Сульман Э.М.
  • Матвеева В.Г.
  • Башилов В.В.
  • Семагина Н.В.
  • Сульман М.Г.
RU2118953C1
СПОСОБ ЭКСТРАКЦИИ ИЗ ТВЕРДОГО РАСТИТЕЛЬНОГО СЫРЬЯ 1996
  • Сульман М.Г.
  • Анкудинова Т.В.
  • Пирог Д.Н.
  • Сульман Э.М.
  • Семагина Н.В.
RU2104733C1
СПОСОБ ГИДРИРОВАНИЯ АЦЕТИЛЕНОВЫХ СПИРТОВ 1998
  • Сульман Э.М.
  • Бронштейн Л.М.
  • Валецкий П.М.
  • Сульман М.Г.
  • Матвеева В.Г.
  • Пирог Д.Н.
  • Косивцов Ю.Ю.
  • Демиденко Г.Н.
  • Чернышов Д.М.
  • Бузинова Н.А.
  • Семагина Н.В.
RU2144020C1
СПОСОБ ПОЛУЧЕНИЯ ГЛЮКОНАТА КАЛЬЦИЯ 1996
  • Сульман Эсфирь Михайловна
  • Санников Олег Борисович
  • Сидоров Александр Иванович
  • Автушенко Маргарита Васильевна
  • Матвеева Валентина Геннадьевна
  • Кирсанов Анатолий Тимофеевич
RU2118955C1
СПОСОБ ПРИГОТОВЛЕНИЯ МОДИФИЦИРОВАННОГО ПЛАТИНОВОГО КАТАЛИЗАТОРА ДЛЯ ЭНАНТИОСЕЛЕКТИВНОГО ГИДРИРОВАНИЯ СЛОЖНЫХ ЭФИРОВ АЛЬФА-КЕТОКАРБОНОВЫХ КИСЛОТ 2008
  • Быков Алексей Владимирович
  • Сульман Эсфирь Михайловна
  • Сульман Михаил Геннадьевич
  • Валецкий Петр Максимилианович
  • Бронштейн Людмила Михайловна
  • Цветкова Ирина Борисовна
RU2364442C1
КАТАЛИЗАТОР СЕЛЕКТИВНОГО ГИДРИРОВАНИЯ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2008
  • Асланов Леонид Александрович
  • Валецкий Петр Максимилианович
  • Волков Владимир Владимирович
  • Григорьев Максим Евгеньевич
  • Захаров Валерий Николаевич
  • Кабачий Юрий Алексеевич
  • Кочев Сергей Юрьевич
  • Матвеева Валентина Геннадьевна
  • Молчанов Владимир Петрович
  • Романовский Борис Васильевич
  • Сидоров Александр Иванович
  • Сульман Михаил Геннадьевич
  • Сульман Эсфирь Михайловна
  • Котосонов Алексей Степанович
RU2366504C1

Иллюстрации к изобретению RU 2 102 136 C1

Реферат патента 1998 года СПОСОБ ПОДГОТОВКИ ПАЛЛАДИЕВОГО КАТАЛИЗАТОРА ДЛЯ СИНТЕЗА ЭТИЛОВОГО ЭФИРА 10-(2,3,4-ТРИМЕТОКСИ-6-МЕТИЛФЕНИЛ) ДЕКАНОВОЙ КИСЛОТЫ

Изобретение относится к способам активации неотработанных катализаторов, используемых в процессах синтеза полупродуктов лекарственных средств и витаминов. Способ подготовки палладиевого катализатора на углеродном носителе "Сибунит" проводят воздействием ультразвука с интенсивностью 0,1- 3 Вт/см2 в течение 5-60 с с помощью конической насадки ультразвукового излучателя, которую погружают в химический стаканчик с катализатором, находящимся в изопропанольном растворе серной кислоты. 1 табл., 3 ил.

Формула изобретения RU 2 102 136 C1

Способ подготовки палладиевого катализатора для синтеза этилового эфира 10-(2,3,4-триметокси-6-метилфенил)декановой кислоты, включающий воздействие на катализатор ультразвуком с частотой 20 22 кГц, отличающийся тем, что в качестве палладиевого катализатора используют катализатор, содержащий палладий на углеродном носителе "Сибунит", и воздействие осуществляют ультразвуком с интенсивностью ультразвукового воздействия 0,1 3 Вт/см2 в течение 5
60 с в изопропанольном растворе серной кислоты.

Документы, цитированные в отчете о поиске Патент 1998 года RU2102136C1

SU, авторское свидетельство N 190288, кл
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Химия и ультразвук
/Под ред
А.С.Козьмина
- М.: Мир, 1993, с.53-54.

RU 2 102 136 C1

Авторы

Сульман Михаил Геннадьевич

Шкилева Ирина Павловна

Сульман Эсфирь Михайловна

Даты

1998-01-20Публикация

1996-04-02Подача