СПОСОБ ОПРЕДЕЛЕНИЯ ГРАНИЦ ФАЗОВЫХ ПЕРЕХОДОВ В ПОЛИМЕРАХ Российский патент 1998 года по МПК G01N22/00 G01N25/02 

Описание патента на изобретение RU2104515C1

Изобретение относится к области исследования свойств и контроля качества полимеров в отраслях промышленности, производящих и использующих полимерные материалы, в частности для определения температурных границ структурных изменений (фазовых переходов) в полимерных материалах.

Известен радиационный (радиографический, радиоскопический и радиометрический) способ исследования структуры полимерных материалов, заключающийся в воздействии на образец ионизирующим излучением с последующим получением изображения структуры образца на пленке или на бумаге и визуальным изучением изменений этой структуры.

Основным недостатком этого способа является использование рентгеновского излучения и радиоактивных источников, опасных для здоровья человека, а также весьма малая точность и оперативность определения температурных границ фазовых переходов.

Известен также способ крутильных колебаний, основанный на использовании крутильного маятника или резонансного метода Бордони, заключающийся в возведении на образец низкочастотными акустическими колебаниями (0,001...10 кГц). Измеряемыми параметрами являются модуль сдвига (динамический модуль Юнга) и тангенс угла механических потерь.

Недостатками данного способа являются ограниченность температурного и частотного диапазонов, невысокая точность.

В более широком диапазоне частот исследуют полимерные материалы при помощи воздействия на них ультразвуком и измерения скорости распространения ультразвуковых колебаний в образце, помещенном в камере тепла и холода.

Недостатками данного способа являются проблема создания надежного акустического контакта между излучателем ультразвуковых колебаний и исследуемым образцом и низкая точность определения изменения скорости ультразвука.

Известен также бесконтактный волноводный способ возбуждения колебаний в полимерных образцах, выполненных в виде открытых диэлектрических резонаторов (ОДР). Способ применяется для исследования диэлектрических характеристик полимеров.

Наиболее близким по технической сущности к предлагаемому техническому решению является бесконтактный волноводный способ исследования физических свойств полимерных материалов.

Целью настоящего изобретения является повышение точности и оперативности определения температурных границ фазовых переходов в полимерных материалах в широком диапазоне температур.

Поставленная цель достигается тем, что в предлагаемом способе используют известный бесконтактный способ возбуждения колебаний в образце полимера, выполненного в виде открытого дискового диэлектрического резонатора (ОДР), помещенного в термокамеру при низких температурах, в которой повышают температуру и одновременно измеряют резонансную частоту образца, по полученным данным совокупности собственных резонансных частот, соответствующих определенным температурам образца, строят кривую, а температурные границы фазовых переходов определяют по экстремумам кривой.

Резонансная частота ОДР в температурной точке начала фазового перехода резко изменяется вследствие резкого изменения молекулярной структуры вещества, вызывающего, в свою очередь, изменение линейных размеров и других параметров, в частности диэлектрической проницаемости.

Сопоставительный анализ заявляемого решения с прототипом показывает, что заявляемый способ отличается от известного тем, что при бесконтактном возбуждении колебаний в образце, помещенном в камеру тепла и холода, определяют зависимость собственных резонансных частот образца от его температуры, строят кривую, а температурные границы фазовых переходов определяют по экстремумам кривой.

Таким образом, заявляемый способ соответствует критерию изобретения "новизна".

Известные технические решения определения температурных границ фазовых переходов в полимерах основаны на исследовании изменяющейся структуры материала различными физическими способами (определение модуля Юнга, рентгенография, по скорости распространения ультразвука и др.).

В предлагаемом способе, отличающемся высокой точностью и оперативностью, определение температурных границ фазовых переходов производят по экстремумам кривой зависимости резонансной частоты образца от температуры.

Это позволяет сделать вывод о его соответствии критерию "существенные отличия".

Для проведения измерений может быть использован измерительный тракт, состоящий из набора стандартных средств измерений: генератор СВЧ, направленные ответвители, вентили, диэлектрический волновод, осуществляющий электромагнитную связь генератора СВЧ с ОДР, электронно-счетный частотомер, поляризационный аттенюатор, детектор СВЧ и осциллограф, обеспечивающий визуальное наблюдение за резонансной кривой ОДР.

Измерительный СВЧ-тракт не имеет открытых выходов излучения и потому не представляет опасности для здоровья оператора.

Погрешность определения температурных границ фазовых переходов зависит только от погрешности измерения температуры образца, так как погрешность измерения резонансной частоты несоизмеримо мала.

На фиг. 1 приведена блок-схема измерительной установки; на фиг. 2 - кривые зависимости резонансных частот от температуры резонаторов, изготовленных из разных полимеров.

Блок-схема измерительной установки позволяет реализовать предлагаемый способ. С выхода СВЧ-генератора 1 сигнал подают на вход развязывающего ферритового вентиля 2, с выхода которого сигнал подается на вход направленного ответвителя 3 и далее на вход поляризационного аттенюатора 4. С выхода направленного ответвителя 3 часть сигнала СВЧ через установочный аттенюатор 5 поступает на смеситель 6 преобразователя частоты 7, частота которого измеряется электронно-счетным частотомером 8.

Сигнал с выхода поляризационного аттенюатора 4 подается на вход камеры тепла и холода 9 и далее по металлическому волноводу 10 поступает на возбудитель (рупорный переход) 11, где электромагнитная волна H10 металлического волновода трансформируется в волну HE11 диэлектрического волновода 12, и через рупорный переход 11 и вентиль 13 сигнал подается на детектор 14 и далее на вход осциллографа 15.

На участке распределенной связи (воздушный промежуток между диэлектрическим волноводом 12 и ОДР 16) волна HE11 возбуждает в резонаторе 16 колебания типа HEn11.

Для точной настройки частоты генератора СВЧ 1 в режиме НГ ко входу автоподстройки частоты генератора присоединяют источник постоянного напряжения 17 с плавной регулировкой. Температуру ОДР 16 измеряют с помощью германиевых и платино-родиевых термометров сопротивления 18 и цифрового омметра 19.

На фиг. 2 приведены графики зависимости резонансных частот от температуры резонаторов, изготовленных из политетрафторэтилена (Ф-4) и сополимера тетрафторэтилена с гексафторпропиленом (Ф-4МБ) на частотах 34,6 и 35,9 ГГц, соответственно в диапазоне температур 4,2 - 350 К.

Предлагаемый способ может быть реализован следующим образом. Исследуемый резонатор помещают в вакуумированной камере тепла и холода, позволяющей измерять температуру от 4,2 до 400 К, устанавливают последовательно ряд температур, определяют резонансную частоту ОДР, строят кривую, а температурные границы фазовых переходов определяют по экстремальным точкам этой кривой. Пик резонансной кривой на экране осциллографа служит для визуального наблюдения за ходом изменения резонансной частоты и ее измерения.

Образец ОДР выполняется непосредственно из исследуемого полимерного материала (фторопласт-4, полиэтилен и др.).

Предлагаемый способ определения температурных границ фазовых переходов может быть реализован на любой частоте в миллиметровом диапазоне волн.

Использование способа наиболее эффективно для исследования полимерных материалов с низкими значениями тангенса угла диэлектрических потерь (< 1•10-4).

Использование предлагаемого способа по сравнению с существующими имеет следующие преимущества:
1. Высокая точность определения резонансной частоты ОДР обеспечивает достоверность определения температурных границ фазовых переходов в полимерных материалах в процессе изменения температуры, что весьма существенно для выявления температурных режимов, при которых нельзя использовать исследуемый материал в неоднородных условиях, например в космической технике.

2. Отсутствие механического контакта с исследуемым образцом исключает возможные нарушения структуры образца в процессе температурных воздействий, что также повышает точность полученных результатов.

3. Непрерывный процесс изменения режимов и измерений, а также наглядность графика повышает оперативность при исследовании материалов.

Похожие патенты RU2104515C1

название год авторы номер документа
СВЧ-измерительная ячейка 1990
  • Менцер Ефим Пиневич
SU1702263A1
Способ измерения энергии активации внутримолекулярного вращения 1985
  • Потапов Алексей Алексеевич
  • Мецнер Ефим Пиневич
SU1346998A1
Способ определения поверхностного сопротивления 1989
  • Егоров Виктор Николаевич
  • Масалов Владимир Леонидович
  • Костромин Валерий Васильевич
SU1835506A1
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ДИЭЛЕКТРИЧЕСКОЙ ПРОНИЦАЕМОСТИ ВЕЩЕСТВ 1972
SU425096A1
СПОСОБ ПОЛУЧЕНИЯ СТАНДАРТНЫХ ОБРАЗЦОВ ВОДЫ 1993
  • Гудков О.И.
  • Вторушин Б.А.
  • Трохан А.М.
RU2036457C1
Способ определения границ фазовых и релаксационных переходов в полимерных материалах 2016
  • Буторин Денис Витальевич
  • Филиппенко Николай Григорьевич
  • Лившиц Александр Валерьевич
  • Каргапольцев Сергей Константинович
RU2625630C1
Автоматический измеритель комплексной диэлектрической проницаемости и времени релаксации молекул растворов 1984
  • Потапов Алексей Алексеевич
  • Войтов Сергей Иванович
  • Гольдштейн Инесса Павловна
SU1318937A1
КОАКСИАЛЬНЫЙ ИЗМЕРИТЕЛЬНЫЙ РЕЗОНАТОР С ЦИЛИНДРИЧЕСКИМ ЭЛЕКТРОДОМ И РЕГУЛИРУЕМЫМ ЕМКОСТНЫМ ЗАЗОРОМ 2018
  • Егоров Виктор Николаевич
  • Ле Куанг Туен
RU2680109C1
КОАКСИАЛЬНЫЙ ИЗМЕРИТЕЛЬНЫЙ РЕЗОНАТОР С НЕИЗЛУЧАЮЩИМ ОКНОМ ДЛЯ ВВОДА ОБРАЗЦА 2016
  • Егоров Виктор Николаевич
  • Костромин Валерий Васильевич
RU2626746C1
Устройство для измерения параметров диэлектриков 1983
  • Взятышев Виктор Феодосьевич
  • Геппе Александр Петрович
  • Добромыслов Владимир Сергеевич
  • Костромин Валерий Васильевич
  • Шермин Владимир Иванович
SU1190304A1

Иллюстрации к изобретению RU 2 104 515 C1

Реферат патента 1998 года СПОСОБ ОПРЕДЕЛЕНИЯ ГРАНИЦ ФАЗОВЫХ ПЕРЕХОДОВ В ПОЛИМЕРАХ

Изобретение относится к области исследования свойств и контроля качества полимеров в отраслях промышленности, производящей и использующей полимерные материалы. Способ определения температурных границ фазовых переходов в полимерах заключается в том, что исследуемый образец полимера выполняют в виде открытого дискового диэлектрического резонатора и помещают в термокамеру при низких температурах, бесконтактным способом возбуждают колебания и производят одновременное измерение температуры и собственной резонансной частоты образца, повышают температуру в камере в пределах диапазона исследований материала образца, по полученным данным совокупности собственных резонансных частот образца, соответствующих его температурам, строят кривую, по экстремумам которой определяют температурные границы фазовых переходов. 2 ил.

Формула изобретения RU 2 104 515 C1

Способ определения температурных границ фазовых переходов в полимерах, заключающийся в том, что в исследуемом образце полимера, выполненном в виде открытого дискового диэлектрического резонатора и помещенном в термокамеру, бесконтактным способом возбуждают колебания при низких температурах, производят одновременное измерение температуры и собственной резонансной частоты образца, отличающийся тем, что температуру в камере повышают в пределах диапазона исследований материала образца и по полученным данным совокупности собственных резонансных частот образца, соответствующих его температурам, строят кривую, а температурные границы фазовых переходов опеределяют по экстремумам этой кривой.

Документы, цитированные в отчете о поиске Патент 1998 года RU2104515C1

Пеперечко И.И
Свойства полимеров при низких температурах
- М.: Химия, 1977, с
Приспособление к тростильной машине для прекращения намотки шпули 1923
  • Чистяков А.И.
SU202A1
Диэлектрические резонаторы /Под ред
М.Е.Ильченко
- М.: Радио и связь, 1989, с
ТКАЦКИЙ СТАНОК 1920
  • Шеварев В.В.
SU300A1

RU 2 104 515 C1

Авторы

Егоров В.Н.

Костромин В.В.

Чертов А.Г.

Даты

1998-02-10Публикация

1991-05-23Подача