Радиопередача и аналоговых и цифровых данных связи обычно осуществляется одним из двух способов. В одном из них, который называют системой амплитудной модуляции, синусоидальный радиочастотный сигнал несущей модулируют по амплитуде в пределах сигнала разведки или связи, а когда сигнал принимают на приемной станции, осуществляют обратный процесс, то есть демодуляцию несущей до восстановления сигнала связи. В другой системе используют способ частотной модуляции и вместо амплитудной модуляции и вместо амплитудной модуляции сигнала несущей ее модулируют по частоте. По получении частотно-модулированного сигнала используется схема, которая осуществляет то, что называется дискриминацией, при которой частотные изменения переводят в изменения амплитуды в соответствии с первоначальной модуляцией, а за счет этого производят восстановление сигнала связи. В обеих системах в качестве базы имеется синусоидальная несущая, которая назначается и занимает заданную частотную полосу или канал, а этот канал занимает часть спектра, которая в случае, если должна устраняться интерференция, не может использоваться другими передачами.
В настоящее время почти каждый уголок и закуток спектрального пространства использован, и имеется огромная потребность в некотором способе расширения пригодности среды для связи. С учетом этого было предложено вместо использования дискретных частотных каналов для радиосвязи, что является обычным подходом, применять радиопередающую связь с использованием более широкого частотного спектра, разнесенного на части, что позволяет расширить от 10 до 100 раз ширину полосы данных, подлежащих передаче, но при этом энергия любой одиночной частоты, составляющей этот спектр, оказывается очень низкой обычно даже уровня нормального шума. Хотя очевидно, что передача такого типа по существу не мешала бы другим службам, заявитель не осведомлен ни о какой имеющейся системе для реализации этого способа.
В соответствии с данным изобретением вырабатываются повторяющиеся сигналы, имеющие короткий фронт и фиксированную или программируемую частоту, а дискретная часть сигнала, имеющего крутой фронт, изменяется или модулируется относительно времени появления и подается на широкополосную антенну. Прием осуществляют радиоприемником, который синхронно детектирует переданные данные посредством эталонного сигнала, имеющего аналогичную полярность с передним сигналом и предпочтительно также имеющего аналогичную используемую амплитудную диаграмму. Необходимо отметить, что термин "импульс", используемый здесь, относится к сигналам описанной в предыдущем предложении категории.
Важным является то, что заявитель распознал и осуществил демодуляцию импульсных сигналов, имеющих время возрастания порядка нс, при этом модуляция и демодуляция включают в себя сдвиг положения таких превращений порядка ±200 пс. В одном режиме осуществляется умножение эталонного и принятого сигнала для улучшения детектирования за счет увеличения селективности приемника.
На фиг. 1 показана комбинация блок-схемы передатчика временной области; на фиг. 2-4 - схемы альтернативных вариантов выходного каскада передатчика, показанного на фиг. 1; на фиг. 5 - комбинированная блок-схема приемника временной области, предложенного в данном изобретении; на фиг. 6 - комбинированная электрическая блок-схема - альтернативный вариант синхронного детектора для показанного на фиг. 5; на фиг. 7 - электрическая блок-схема альтернативного варианта приемника временной области; на фиг. 8 - набор электрических диаграмм колебаний, показывающий особенности схемы, приведенной на фиг. 1 и 5; на фиг. 9 - блок-схема радиоприемника, показанного на фиг. 6, и 7; на фиг. 10 - набор электрических сигналов, иллюстрирующий особенности работы схемы, показанной на фиг. 9.
Как показано на фиг. 1 и в первую очередь в передатчике 10, базовая частота 100 КГц генерируется генератором 12, который обычно является кварцевым генератором. С его выхода импульсный сигнал подается на делитель 14 с коэффициентом деления 4 для получения на выходе частоты 25 Кгц, амплитудой 0-5 В, при этом получается сигнал, показанный буквой А на фиг. 8. Далее буквенными обозначениями колебаний они будут просто идентифицироваться с помощью букв без ссылки на фиг. 4. Выходной сигнал частотой 25 Кгц используется в качестве общего сигнала передачи и в качестве входа на источник питания 16. Последний является регулируемым и с него подается 300 в постоянного тока со смещением без помех для выходного каскада 18 передатчика 10, который также работает при частоте 25 Кгц.
Выходной сигнал делителя 14 с коэффициентом деления 4 используется в качестве базового сигнала и подается через емкость 20 на модулятор 22 положения импульса. Модулятор 22 положения импульса содержит на своем конце схему RC, содержащую резистор 24 и конденсатор 26, которые преобразуют прямоугольный входной сигнал на приблизительно треугольный сигнал, как показано эпюрой B, причем он подается по резистору 25 на неинвертирующий вход компаратора 28. Выбранное или эталонное положительное напряжение, отфильтрованное конденсатором 27, также подается на неинвертирующий вход компаратора 28, причем он подается с клеммы 45 В, обозначенной позицией 29, питания смещения 30 постоянного тока через резистор 32. В соответствии с этим, например, действительно появится на неинвертирующем входе треугольное колебание, смещенное вверх положительно, как показано на эпюре C.
Действительный уровень проводимости компаратора 28 определяется входным сигналом, подаваемым через конденсатор 36 по резистору 37 на неинвертирующий вход компаратора 28, смещенный от питания 30 резистором 38 и резистором 32. Входное смещение комбинированного сигнала показано эпюрой D. Входным сигналом может быть просто слышимый сигнал с микрофона 34, усиленный в случае необходимости усилителем 35. Или же посредством замкнутого переключателя 39 он может быть суммой слышимого сигнала и сигнала смещения или смешивающего напряжения, например, создаваемого входным сигналом генератора 33, причем сигналы суммируются на резисторе 41. Генератор 33 сигнала может, например, выдавать синусоидальный, двоичный или другой сигнал и, как показано, он называется "генератором двоичного сигнала А". Таким образом, генератор 33 выдает напряжение двоичного сигнала в виде последовательности дискретных импульсов напряжения, изменяющихся от нулевого напряжения до некоторого дискретного напряжения, которое может представлять буквенные или числовые величины или просто случайную величину. Посредством описанной входной комбинации выход компаратора 28 увеличивается до уровня положительного насыщения, когда треугольный сигнал 40 (эпюра E) станет большей величины, чем эффективный сигнал модуляции 42, и упадет до уровня отрицательного насыщения, когда сигнал модуляции 42 станет большей величины, чем треугольный сигнал 40. Выходной сигнал компаратора 28 показан на эпюре F, а эффект заключается в изменении "вкл" и "выкл" импульсов, показанных в этой эпюре, в функции комбинации информационного и смешивающего сигнала, когда он используется. Таким образом, осуществляется модуляция положения импульса из сигнала амплитуды. Смешивающий сигнал позволяет включать в передающий сигнал добавленную дискретную картину временных положений, таким образом, за счет необходимости его приема и демодуляции смешивающий сигнал воспроизводится точно.
Что касается выходного сигнала компаратора 28, то мы заинтересованы в использовании его отрицательной части или заднего фронта 44, и необходимо отметить, что этот задний фронт варьирует во времени в функции модуляции сигнала. Этот задний фронт колебания в эпюре F запускает на "вкл" одностабильный мультивибратор 46, имеющий время "вкл" примерно в 50 нс, а его выход показан эпюрой G. Для иллюстрации, хотя соответствующие передние или задние фронты колебаний точно выравнены, ширина импульсов и промежутки (обозначенные прерывистыми линиями промежутки составляют 40 микросекунд) не соотнесены масштабно. Таким образом, передний фронт импульса соответствует во времени заднему фронту 44 (колебание F), а его положение во времени в пределах среднего времени между импульсами колебаний G варьирует в функции входного сигнала модуляции на компаратор 28.
Выходной сигнал моностабильного мультивибратора 46 подается через диод 48 на резистор 50 и на базовый вход npn транзистора 52, работающего в качестве синхронизирующего усилителя. Он обычно смещен резистором 54, например, величиной 1,5 кОм с клеммы 29 напряжения +5 В пятивольтного источника питания 30 на его коллектор. Конденсатор 56, имеющий емкость примерно 0,1 мкФ, Фсоединен между коллектором и землей транзистора 52, что позволяет создать полный потенциал смещения на транзисторе для создания короткого интервала его включения порядка 50 нс. Вход транзистора 52 соединен между эмиттером и землей к первичной обмотке 58 синхронизирующего трансформатора 60. В дополнение к этому транзистор 52 может запускать трансформатор 60 посредством лавинного транзистора, соединенного по схеме с общим эмиттером через резистор коллекторной нагрузки. С целью запуска трансформатора 60 крутым фронтом импульса транзистор в лавинном режиме является идеально подходящим. По идентичным вторичным обмоткам 62 и 64 синхронизирующего трансформатора 60 отдельно подаются входные сигналы база-эмиттер на лавинный транзистор npn или работающие в лавинном режиме транзисторы 66 и 68 силового выходного каскада 18. Хотя показаны два транзистора, при соответствующем подключении могут использоваться один или более двух.
При работе с лавинными транзисторами 66 и 68 установлено, что такой режим возможен с рядом типов транзисторов, которые и не предназначены для этого, например, типа 2N2222, в частности с металлической оболочкой. Иногда режим лавинный обозначают как режим второго пробоя, и когда транзисторы работают в этом режиме и переключаются во включенное состояние, их сопротивление быстро падает до низкого (внутренне это происходит почти со скоростью света), и они остаются в этом состоянии до тех пор, пока коллекторный ток не упадет достаточно для отсечки проводимости (на уровне нескольких микроампер). Некоторые другие транзисторы, например, типа 2N4401 также проявляют надежные лавинные характеристики. Как показано на чертеже, коллекторно-эмиттерные цепи двух транзисторов соединены последовательно, и на них подано коллекторное смещение +300 В от источника питания 16 по фильтрующему конденсатору 72 и через резистор 74 на один конец 76 параллельно соединенных линий задержки DL. Хотя показаны три секции S1-S3, обычно используют от пяти до десяти секций, что необходимо для получения заданного колебания. Они могут изготавливаться на основе коаксиального кабеля типа RG58, и каждая из них составляет в длину примерно 7,5 см, что необходимо для выработки импульса длительностью примерно 1 нс. Как показано на чертеже, положительный входной потенциал от резистора 74 соединен с центральным проводником каждой из линий задержки, а внешние проводники соединены с землей. Резистор 74 составляет порядка 50 кОм и подбирается так, чтобы через резисторы 66 и 68 шел ток около 0,2 ма, являющийся током Зенера, с помощью которого оба транзистора оказываются в состоянии, близком к самозапуску. Установлено, что при этих условиях транзисторы самонастраиваются на лавинное напряжение, которое может быть равным для них обоих. Нормально резистор 74 должен иметь величину, которая позволила бы заряжать линии задержки L между импульсами. Линии задержки DL заряжаются до 300 В смещения во время периода, когда транзисторы 66 и 68 выключены, то есть между входными импульсами. Когда входные сигналы на транзисторы 66 и 68 передаются на "вкл" запускающим импульсом, они начинают проводить в течение 0,5 нс или менее, а за счет низковольтного скачка напряжения на них (при работе в лавинном режиме) на выходном резисторе 78, например, в 50 ом появляется примерно 120 в виде импульса.
Существенно, что включающий фронт или передний фронт этого импульса создается запускающим импульсом, подаваемым на входы транзисторов 66 и 68, а задний фронт этого выходного импульса определяется в основном времени разряда линий задержки D1. С помощью такой технологии и за счет выбора длины и волнового сопротивления линий задержки вырабатывается очень короткий, хорошей формы импульс порядка 1 нс с пиковой мощностью примерно 300 Вт. При последующем выключении линии задержки DL перезаряжаются через резистор 74 перед приходом следующего запускающего импульса. Как станет очевидно, силовой каскад 18 является чрезвычайно простым и сделан на основе совсем недорогих схемных элементов. Например, имеются транзисторы 66 и 68 (если используются 2N2222) по цене примерно 12 центов.
Выходной сигнал силового выходного каскада 18 появляется на резисторе 78 и подается по коаксиальному кабелю 80 на формирующий фильтр 82 временной области, который используется для фиксирования выбранного значения выходному сигналу как форме кодирующего или распознающего сигнала. Или же фильтр 82 может отсутствовать, когда такие схемные меры не сочтены необходимыми, а показателем этого является шунтирующая линия 84, содержащая переключатель 86, схематически отображающая это отсутствие.
Выходной сигнал фильтра 82 или непосредственно выход силового каскада 18 подается по коаксиальному кабелю 88 на диско-конусную антенну 90, которая является арезонансной или другой широкополосной антенной. Антенна такого типа излучает относительно равномерно все сигналы частоты выше ее частоты отсечки, которая является функцией размера, например, сигналов выше примерно 50 Мггц для относительно небольшого блока. В любом случае антенна 90 излучает сигнал с широким спектром, причем пример показан во временной области эпюрой H на фиг. 8, при этом колебание является композицией от эффектов формирования на фильтре 82, если такой используется, и до некоторой степени характеристики дискоконусной антенны 90.
На фиг. 2 показан альтернативный и упрощенный выходной каскад. Как показано на чертеже, биконическая антенна 200 в качестве широкополосной антенны заряжается от источника 65 постоянного тока через резисторы 67 и 69 до предельного напряжения, которое является суммой лавинного напряжения транзисторов 66 и 68, о чем говорилось выше. Резисторы 67 и 69 вместе имеют величину сопротивления, которая позволяет транзисторам 66 и 68 смещаться, как показано выше. Резисторы 71 и 73 имеют относительно малую величину и регулируются на прием энергии частоты отсечки антенны, а также на предотвращение переходного процесса. Во время работы, когда первичную обмотку 58 импульсного трансформатора 60 подается импульс, транзисторы 66 и 68 открываются, эффективно закорачивая резисторы 71 и 73 элементы 204 и 206 биконической антенны (фиг. 2). Это происходит чрезвычайно быстро, в результате чего вырабатывается сигнал в основном такой, как показано буквой H. Он передается, как описано выше для выходной передающей системы, показанной на фиг. 1.
На фиг. 3 показан альтернативный вариант передающего выходного каскада. Он существенно отличается от каскада, показанного на фиг. 2, тем, что в нем используется светочувствительный лавинный транзистор 63, например, 2N3033. Аналогичные компоненты обозначены теми же номерами позиций, что и на фиг. 2, но только с добавлением окончания "а". Транзистор 63 переключается лазерным диодом или быстрым включающим светодиодом 61, который, в свою очередь, управляется лавинным транзистором 52, в основном работающим, как показано на фиг. 1. За счет исследования световозбуждаемого лавинного пробоя или другого лавинного режима, обуславливающего работу полупроводниковых выключателей (уже существующих или которые появятся вскоре), или их последовательного соединения оказывается, что напряжение для источника питания 65 может быть поднято до многокиловольтного диапазона, что позволяет получить по существу силовой выход как можно выше. В этом отношении и в качестве конкретного отличия данного изобретения должен использоваться светопереключаемый переключатель, работающий в лавинном режиме, изготовленный на основе арсенида галлия.
На фиг. 4 показаны два альтернативных отличия, касающихся выходного каскада, показанного на фиг. 1. Так, вместо линии задержки DL поставлен небольшой конденсатор 89, например в 30-100 пФ, который первоначально обеспечивает смещающий входной сигнал с накоплением мощности на коллекторе на транзисторы 66 и 68 и разряжается через них. За счет его использования можно получить чрезвычайно короткое время возрастания в данном каскаде.
Кроме того, используется линия задержки 97 вместо эмиттерного резистора 78. Ее роль заключается в быстром сбросе до нуля выходного сигнала передатчика сразу после открывания транзисторов. Во время открывания она имеет нормальное волновое сопротивление линии задержки. Обычно она выбирается так, чтобы у нее было то же самое волновое сопротивление, что и у передающей линии 80. Таким образом, она согласуется с ней и создает плавную передачу энергии. Однако, в конце времени подъема сигнала линия задержки представляет практически нулевое сопротивление или короткое замыкание для выходного сигнала и тем самым круто переводит к нулю выходной сигнал вслед за подъемом на передающем каскаде.
Как показано на фиг. 1, выходной сигнал дискоконусной антенны 90 или биконических антенн 204 и 206 (фиг. 2) обычно передается по дискретному пространству и обычно принимается аналогичной широкополосной антенной, например, двухконусной антенной 92 приемника 96 во второй точке (фиг. 5). Хотя эффекты передачи могут немного исказить колебание, для иллюстрации будет предполагаться, что принимаемое колебание будет представлять собой точную копию колебаний H. Принятый сигнал усиливается широкополосным усилителем 94, имеющим широкополосную частотную характеристику в диапазоне переданного сигнала. В случаях, когда используется фильтр 82 в передатчике 10, будет применяться эквивалентный фильтр 98. Фильтр 98 также может быть сделан таким, чтобы можно было удалять искажения, происходящие во время передачи. Как показано в случаях, когда не используется согласованный фильтр, схематически обозначено переключателем 100, соединяющим вход и выход фильтра 98, что при его замыкании фильтр 98 закорачивается. Предполагая, что не используется согласованный фильтр, выход широкополосного усилителя в виде точной копии колебания H показан колебанием 1. В любом случае он оказывается на резисторе 101.
Колебание 1 подается на синхронный детектор 102. В основном он имеет два функциональных блока: ламповый транзистор 104 и регулируемый одновибратор 106. Одновибратор 106 запускается на входе с эмиттерного резистора 110, соединенного между эмиттером транзистора 104 и землей. Лавинный транзистор 104 смещен источником 112 постоянного тока, например, на 100-130 В посредством переменного резистора 114 от 100 кОм до 1 мОм. Линия задержки 116 соединена между коллектором и землей транзистора 104 и обеспечивает эффективное рабочее смещение для транзистора 104, причем она заряжается между периодами проводимости, как будет описано ниже.
Предполагая, что интервал заряда начался, лавинный транзистор 104 откроется или переключится сигналом, поданным на его базу с резистора 101. Также предполагается, что это переключение оказывается возможным, когда выход Q (колебание J) становится у одновибратора 106 высоким. После переключения, за счет проводимости лавинного транзистора 104 происходит возрастание напряжения на эмиттерном резисторе 110, то есть сигнал на эпюре K, а это напряжение, в свою очередь, переключает моновибратор 106, вызывая падение на его выходе Q до низкого уровня. За счет этого диод 108 становится проводящим, эффективно закорачивая вход на лавинный транзистор 104, причем это происходит в пределах от 2 до 20 нс от положительного переднего фронта входного сигнала, эпюра I. Период проводимости транзистора 104 устанавливают точно за счет емкости и электрической длины линии задержки 116. С помощью линии задержки, выполненной на основе ненагруженного коаксиального кабеля RG58 длиной 30 см и зарядного напряжения порядка 110 В, этот период устанавливают, например, величиной примерно 2 нс. Могут использоваться одна или более параллельных секций коаксиального кабеля, имеющего длину в пределах от 2,5 мм до 75 см при соответствующем изменении времени включения.
Одностабильный мультивибратор 106 устанавливается на время переключения для его выхода Q с целью возврата к высокому уровню в заданное время вслед за его переключением, как описано выше. Когда он переключается, диод 108 снова будет заблокирован и, таким образом, будет снят режим короткого замыкания на базовом входе лавинного транзистора 104, что делает его чувствительным к входному сигналу. Например, это произойдет в момент времени T1 на эпюре J. Период задержки переключением мультивибратором 106 устанавливается таким, чтобы возобновленная чувствительность лавинного усилителя 104 возникла в момент T1, как раз перед тем, как ожидается, что должен возникнуть сигнал, представляющий интерес. Как будет отмечено, это произойдет как раз перед возникновением ожидаемого сигнала, показанного на эпюре I. Таким образом, при частоте повторения 25 Кгц представляющего интерес сигнала моностабильный мультивибратор 106 будет установлен на переключение выхода Q с низкого уровня на высокий в течение 40 микросекунд или 400000 нс. Считая, что ширина положительной части входного импульса составляет лишь около 20 нс, можно констатировать, что во время большей части промежутка синхронный детектор 102 является нечувствительным. Окно чувствительности существует от момента T1 до момента T2 и регулируется по длительности с помощью обычного временного регулирования моностабильного мультивибратора 106. Обычно он сначала настраивается в широкой полосе для обеспечения достаточного окна для быстрого запирания на сигнал, а затем его регулируют с целью получения более узкого окна для максимального коэффициента сжатия.
Выходной сигнал лавинного транзистора 104, эпюра K представляет собой последовательность импульсов постоянной длительности, у которых момент переднего фронта изменяется в функции модуляции. Таким образом, имеется некоторая форма модуляции положения импульса. Он возникает на эмиттерном резисторе 110 и подается с эмиттера транзистора 104 на низкополосный фильтр 117 активного типа. С помощью низкокачественного фильтра 117 производят трансляцию, демодуляцию, варьируя импульсным сигналом до информационного сигнала базовой полосы, и он подается и усиливается на аудиоусилителе 119. Затем, считая, что передача речи производится так, как описано выше, выходной сигнал аудиоусилителя 119 подают для восприятия на громкоговоритель 120. Если бы информационный сигнал был другим, то использовалась бы соответствующая демодуляция для детектирования имеющейся модуляции.
Необходимо особенно отметить, что приемник 96 имеет две особенности настройки: чувствительность и длительность окна. Чувствительность регулируют настройкой регулируемого источника питания 112, а сигнал "захват цели" осуществляется настройкой периода состояния высокого уровня моностабильного мультивибратора 106, как это было описано. Обычно этот период должен регулироваться на минимум, необходимый для захвата диапазона размаха импульсов сигнала с модулированным положением, представляющих интерес.
На фиг. 6 показан альтернативный вариант детектора для приемника 96, причем этот детектор обозначен позицией 122. В нем осуществляется детектирование синхронного сигнала с использованием стробирующего мостика (селектора) 124, выполненного из четырех согласованных диодов D1-D4. По существу он работает как однополюсный одноходовой переключатель или просто вентиль, при этом входной сигнал возникает на резисторе 101 и подается на его входную клемму I. Стробированный выходной сигнал появляется на клемме O и подается через конденсатор 113 по резистору 118 на вход демодулирующего низкочастотного фильтра 117 активного типа. Схема стробирования 124 открывается импульсом PG, показанным пунктиром на эпюре L на фиг. 8 и подаваемым на клемму G. Импульс PG вырабатывается моностабильным мультивибратором 126, который контролируется генератором 127, управляемым напряжением, ГУН. ГУН 127, в свою очередь, предназначен для синхронизации со средней скоростью входных сигналов, показанных сплошными линиями на эпюре L. Для выполнения этой операции выходное напряжение со схемы стробирования 124 подается через резистор 128 по (усредняющему) конденсатору 130, соединенному с управляющим входом ГУН 127. Управляемый таким образом по частоте выходной сигнал ГУН 127 подается на вход моностабильного мультивибратора 126, который затем выдает в качестве выходного стробирующий импульс PG. Этот импульс является прямоугольным и имеет заданную длительность обычно от 2 до 20 нс, которая выбирается в пределах временной модуляции переданного импульса. Он подается на первичную обмотку импульсного трансформатора 132, и вторичная обмотка этого трансформатора соединена с клеммами G схемы стробирования 124. Диод 134 соединен с концами вторичной обмотки трансформатора 132 и функционирует в качестве закорачивающего элемента отрицательной части, которая в ином случае появилась бы из-за подачи импульсного выхода моностабильного мультивибратора 126 на трансформатор 132. При этом стробирующий импульс сдвигает все диоды стробирующего устройства 124, проводящие в течение его длительности и пропускающие за счет этого входные сигналы от клеммы I на клемму O. Как утверждается выше, этот входной сигнал подается через конденсатор 113 и по резистору 118 на вход низкочастотного фильтра 117.
Функцией детектора 122 является подача на низкочастотный фильтр 117 той части входного сигнала, которая показана в эпюре L на фиг. 8, и появляется в границах стробирующего импульса PG. Временное положение стробирующего импульса PG устанавливается синхронизацией импульсных выходов ГУН 127, а частота выходного сигнала ГУН 127 определяется входным напряжением на ГУН 127, возникающим на конденсаторе 130. Конденсатор 130 выбирают таким, чтобы его постоянная времени была немного ниже той, которая соответствует самой нижней частоте модулируемой модуляции. Таким образом, частота выходного импульса ГУН 127 будет такой, чтобы не происходило изменение положения стробирующего импульса PG во время создаваемого за счет модуляции размещения импульсов входного сигнала (как показано сплошными линиями на эпюре H). В результате этого средняя величина сигнала, который стробируется через схему стробирования 124, изменяется в функции первоначально накладываемой на сигнал модуляции. Эта средняя величина транслируется в амплитудном виде информационного сигнала путем пропускания его через низкочастотный фильтр 117. Затем он усиливается в зависимости от необходимости аудиоусилителем 119 и воспроизводится громкоговорителем 120.
На фиг. 7 показан альтернативный вариант приемника, показанного на фиг. 5. Во-первых, показанная антенна, то есть биконусная антенна 115 (которая содержит действительные антенные элементы и отражатель) используется в качестве направленной антенны. Во-вторых, смеситель 111 выполнен в виде двойного балансного модулятора и в нем производится умножение и усиление выходного сигнала широкополосного усилителя 94 точной копией переданного сигнала (фиг. 8), выработанного эталонным генератором 119 (или 234), который может содержать лавинный транзистор и пассивную схему, необходимые для получения заданного колебания, что показано на эпюре H. Пассивная схема может содержать разомкнутую линию задержки на транзисторе или транзисторах и закороченную линию задержки в эмиттерной схеме. Как необходимо отметить, моностабильный блок 126 исключен, а с выхода микшера 111 выдается выходное напряжение на низкочастотный фильтр 117. Конденсатор 129 и резистор 131 функционируют в качестве низкочастотного фильтра, управляющего ГУН 127, который представляет собой генератор с варьируемым на очень малую часть (0,0001%-0,01%) напряжением для осуществления контура фазы синхронизации.
На фиг. 9 показан радиоприемник, который, в частности, предназначен для приема и детектирования переданного сигнала во временной области. В дополнение к этому там показана система для детектирования информации, которая смешана с конкретным сдвигающим или подмешивающим сигналом, цифровым или аналоговым, типа выдаваемой генератором 33 двоичной последовательности "А", показанным на фиг. 1. Поэтому в интересах описания предполагается, что переключатель 39 на фиг. 1 является замкнутым и переданный передатчиком 10 сигнал представляет собой сумму информационных сигналов от микрофона 34 с выходом генератора 33 двоичной последовательности "А", и таким образом, положение импульсов на выходе передатчика 10 является функцией и информационных и сдвиговых или смешанных сигналов. Таким образом, переданный сигнал может быть описан как модулированный по положению импульса сигнал, подвергнутый изменениям положения импульса, осуществляемым схемой временного сдвига двоичной последовательности "А".
Переданный от передатчика 10 сигнал принимается широкополосной антенной 220 (фиг. 9), и этот сигнал подают на две базовые схемы, то есть на схему демодуляции 222 и эталонный генератор 224. В соответствии с данным изобретением точная копия переданного сигнала, то есть колебание H (фиг. 8), используется для осуществления детектирования принятого сигнала, причем основное детектирование производится в умножителе или умножающем микшере 226. Для получения максимальной реакции эталонный сигнал, воспроизводимый как колебание T1 на фиг. 10, должен подаваться на микшер 226 близко по фазе с входным, что будет описано далее. Он будет отличаться по величине, неотличимой в колебаниях на фиг. 10, в функции модуляции при разбросе примерно в ±200 пс обычно для импульса в 1 нс. Для осуществления такой близкой синхронизации в эталонном генераторе 224 используется кварцевый генератор 227 с управляющим напряжением, который управляется напряжением, которое синхронизирует свою работу в пределах принятого сигнала.
Генератор 227 работает на частоте, которая существенно выше, чем частота повторения передатчика 10, и его выходной сигнал делится до рабочей частоты 25 Кгц на делителе частоты 230, таким образом она равна выходному сигналу делителя 14 передатчика 10.
С целью создания картины подмешивания, соответствующей той, которая создается генератором 33 двоичной последовательности "А", аналогичный генератор 228 выдает двоичное изменяющееся напряжение на программируемую схему задержки 232, которая создает на сигнальном выходе делителя 230 картину задержки соответствующую той, которая выдается генератором 33 двоичной последовательности "А" на фиг. 1, когда добавляется к модуляции информации. Таким образом, например, это могут быть четыре 8-разрядных двоичных слова, обозначающие числа 4,2,6 и 8, причем такая же картина генерируется генератором 33 двоичной последовательности "А" и передается передатчиком 10. Также предполагается, что это - повторяющаяся двоичная картина. Таким образом, программируемая задержка 232 сначала задержит принимаемый ею импульс от делителя 230 на четыре блока. Затем то же самое будет сделано для числа 2 и так далее до тех пор, пока не закончится последовательность из четырех чисел. Затем последовательность начнется снова. Для того, чтобы оба генератора двоичной последовательности работали синхронно, либо время запуска последовательности должно передаваться на приемник, либо должно производиться стробирование сигнала для достаточного количества входных импульсных сигналов для установки синхронизации за счет управления системой синхронизации, что будет описано далее. Хотя предлагается повторяемая последовательность, она не должна быть такой длинной, так как синхронизация между обоими генераторами имеется, как при передаче сигнала пуска последовательности и создания в приемнике средства для детектирования его и использования.
Либо программируемая задержка 232, либо второе устройство задержки, соединенное с ее выходом, дополнительно создадут общую схемную задержку, обеспечивающую схемные задержки, которые заложены в соответствующих схемах, с которыми она работает, что будет описано далее. В любом случае задержанный выход задержки 232, который представляет собой составную задержку, будет подаваться на вход эталонного генератора 234, а он предназначен для генерирования точной копии переданного сигнала, показанного на фиг. 10 в виде эпюры T1. Дифференциальный усилитель 246 в основном функционирует в сторону создания напряжения постоянного тока, необходимого для подачи сигнала коррекции или погрешности на генератор 227, что позволяет подать на микшер 226 сигнала T1 точной копии точно в фазе со средним временем входного сигнала EA.
С целью выработки ближайшего сигнала входной сигнал EA умножают на две разнесенных во времени точные копии эталонного сигнала с выхода эталонного генератора 234. Первый из них, показанный как T1, умножается в микшере 236 на входной сигнал EA, а второй эталонный сигнал T2 умножается на входной сигнал EA в микшере 238. Как показано на фиг. 10, T2 задерживают относительно сигнала T1 на задержку 240 на период по существу в половину длительности главного лепестка P эталонного сигнала T1.
Выходной сигнал микшера 236 интегрирует в интеграторе 242, а его выходной сигнал стробируют и блокируют в блоке стробирования и блокировки 244, запускаемым задержкой 232. Выходной сигнал блока 244 стробирования и блокировки, единый с произведением входного сигнала EA и IT1, подается на неинвертирующий вход дифференциального усилителя 246. Аналогично выходной сигнал микшера 238 интегрируют на интеграторе 248 и стробируют и блокируют в схеме стробирования и блокирования 245 при запуске задержкой 232, а интегрированное произведение входного сигнала EA и эталонного сигнала T2 подают на инвертирующий вход дифференциального усилителя 246.
Для проверки работы дифференциального усилителя 246 надо заметить, что если фаза выходного сигнала генератора 22 будет опережать, сигналы T1 и E1, поданные на микшер 236, будут ближе по фазе, а их произведение увеличится, что приведет к увеличению входного сигнала на неинвертирующий вход дифференциального усилителя 246, тогда как эффект опережения эталонного сигнала T2 относительно входного сигнала E1 будет таким, что их совпадение уменьшится, приводя к уменьшению произведения на микшере 238 и поэтому к уменьшенному входному напряжению на инвертирующий вход дифференциального усилителя 246. В результате этого выход дифференциального усилителя 246 сдвинется в положительном направлении и сигнал этой полярности будет таким, что произойдет запаздывание по фазе генератора 227. Если бы изменение произошло в противоположном направлении, результатом бы явилось то, что большие напряжения были бы поданы на инвертирующий вход, чем на неинвертирующий вход дифференциального усилителя 246, вызывая уменьшение выходного сигнала и запуск генератора 227 в противоположном направлении. При этом ближняя средняя блокировка фазы осуществляется между входным сигналом TA и эталонным сигналом TA, который используется непосредственно в модуляции входного сигнала. Термин "ближний" использован в том смысле, что выход дифференциального усилителя 246 пропускается через низкочастотный фильтр 253 перед подачей на управляющий вход генератора 227. Частота отсечки низкочастотного фильтра 253 устанавливается такой, чтобы можно было произвести эффект сдвига довольно большого числа импульсов (например, от 10 до 0,001 Гц). В результате этого характеристика генератора 227 является такой, что получается выходной сигнал, который обеспечивает, что колебание T1 и тем самым колебание TA неизменны по положению относительно эффекта модуляции. При таком ограничении и с целью получения синхронного детектирования входного сигнала выход T1 эталонного генератора 234 задерживают на период, равный по существу одной четвертой периода P главного лепестка эталонного и входного сигнала, и это подается в виде сигнала TA с входным сигналом EA на умножающий микшер 226. Необходимо отметить, что полученный задержанный сигнал TA теперь близок по синхронизации с входным сигналом EA и, таким образом, выходной сигнал умножителя 226 обеспечивает по существу максимальный выходной сигнал. В случаях, когда просто нет сигнала или имеется сигнал шума на сигнальном входе микшера 226, между входными сигналами EA будет промежуток времени точно в 40 миллисекунд, показанный на фиг. 8, а от микшера 226 на выходе будет минимальное отклонение времени.
Выходной сигнал микшера 226 интегрируют в интеграторе 250 и выходной сигнал умножается на коэффициент 0,5 усилителем 252. Затем это половинное выходное напряжение усилителя 252 подают на инвертирующий вход компаратора 254, и это напряжение представляет половину пикового выхода интегратора 250. В то же самое время второй выход интегратора 250 подается через линию задержки 256 на неинвертирующий вход компаратора 254, причем задержка такова, какая требуется для стабилизации работы усилителя 252 и компаратора 254 с целью получения эффективного сигнала сравнения на уровне, который будет по существу независим в работе от этих двух блоков. Выход компаратора 254 представляет по существу точную временную метку, которая изменяется с положением входного сигнала EA. Затем он подается на восстанавливающий вход триггера 258, причем установочный вход получают от выхода задержки 232, который представляет благодаря низкочастотному фильтру 253 средний промежуток между входными сигналами, тем самым обеспечивая эталон, с которым может быть соотнесен выходной сигнал компаратора, который является переменным по времени и управляемым модуляцией. Он соотносится посредством выхода задержки 232, поступающего в качестве установочного входа на триггер 258. Таким образом, например, выходной сигнал триггера 258 поднимается за совместимое время, относящееся к средней скорости повторения, как по существу диктуется низкочастотным фильтром 253. Таким образом, выходной сигнал триггера 258 будет доведен до нуля в момент времени, которое отражает модуляцию информации на входном сигнале. Таким образом, мы будем иметь высоту импульса с постоянной амплитудой, но с длительностью, которая варьирует непосредственно с модуляцией. Затем выход триггера 258 подается через низкочастотный фильтр 260, который транслирует сигнал от широкоимпульсной демодуляции к модуляции амплитуды сигнала, который затем воспроизводится громкоговорителем 262.
Предполагая, что генератор 33 двоичной последовательности передатчика 10 и генератор 228 двоичной последовательности "А" для приемника работают по существу и синхронизации, причем эффект смешивания временного положения генератора 33 передатчика 10 и не будет оказывать смещающего воздействия на сигнал.
Как предложено выше, с целью обеспечения синхронизации требуется некоторая форма сигнализации между передатчиком, относящимся к запуску генератора двоичной последовательности, то есть генератора 33. Это может быть сделано с помощью вспомогательного передатчика или декодирующего устройства, в котором в заключение одной последовательности генератора 33 двоичной последовательности будет выдаваться пусковой сигнал для генератора 228 двоичной последовательности приемника. В отсутствие этого в режиме циклического свободного хода синхронизация будет осуществляться за счет работы эталонного генератора 224, который для коротких кодов и при относительно низким уровне шума будет относительно коротким, а для более длинных кодов или случаев, когда шум представляет значительную проблему, для синхронизации потребуются более длинные периоды. Когда необходимо, приемная станция может передавать обратно на первичную передающую станцию подтверждение, что получена синхронизация.
Исходя из предыдущего, необходимо отметить, что заявитель создал и недорогую и практическую систему связи во временной области. Хотя описана система, в которой использован одиночный короткий импульс, например, длительностью в нс, передаваемый с такой скоростью повторения, что между импульсами имеется 40 микросекунд, в изобретении предполагается, что может посылаться группа импульсов, которые будут отделены более длинными периодами. Таким образом, например, группой может посылаться последовательность в 8 разрядов, в которой между импульсами просто оказывается промежуток для детектирования их многопозиционных сдвигов при модуляции. При таком устройстве необходимо отметить, что переданные информационные данные увеличатся в 256 раз или помехоустойчивость от шума может значительно ухудшиться с помощью этой технологии и относящегося к ней.
название | год | авторы | номер документа |
---|---|---|---|
СИСТЕМА РАДИОПЕРЕДАЧИ ВРЕМЕННЫХ ИНТЕРВАЛОВ | 1990 |
|
RU2126163C1 |
СИСТЕМА СВЯЗИ С КОЛЛЕКТИВНЫМ ДОСТУПОМ И КОДОВЫМ РАЗДЕЛЕНИЕМ КАНАЛОВ (СДМА), СИСТЕМА СВЯЗИ АБОНЕНТОВ С ПОМОЩЬЮ БАЗОВОЙ СТАНЦИИ С АБОНЕНТАМИ УДАЛЕННОЙ СИСТЕМЫ, СИСТЕМА МЕСТНОЙ СВЯЗИ И СПОСОБ СОЗДАНИЯ МНОГОЛУЧЕВОГО РАСПРОСТРАНЕНИЯ ПЕРЕДАВАЕМЫХ СИГНАЛОВ СДМА В СИСТЕМЕ СВЯЗИ | 1991 |
|
RU2111619C1 |
АНТЕННАЯ СИСТЕМА И БАЗОВАЯ СТАНЦИЯ СИСТЕМЫ СВЯЗИ И СПОСОБ СОЗДАНИЯ В НЕЙ МНОГОЛУЧЕВОГО РАСПРОСТРАНЕНИЯ ПЕРЕДАВАЕМЫХ СИГНАЛОВ | 1994 |
|
RU2107989C1 |
СИСТЕМА ПЕРЕДАЧИ ИНФОРМАЦИИ | 2019 |
|
RU2719545C1 |
УСТРОЙСТВО ФОРМИРОВАНИЯ ОТВЕТНЫХ ПОМЕХ РАДИОЛОКАЦИОННЫМ СТАНЦИЯМ | 2002 |
|
RU2237372C2 |
ПРИЕМНИК РАДИОЧАСТОТНЫХ СИГНАЛОВ | 2012 |
|
RU2596603C2 |
СПОСОБ СИНХРОНИЗАЦИИ ШКАЛ ВРЕМЕНИ | 1997 |
|
RU2146833C1 |
МОДУЛЯЦИОННЫЙ РАДИОМЕТР | 2001 |
|
RU2187824C1 |
ПРИЕМОПЕРЕДАТЧИК ЧАСТОТНО-МОДУЛИРОВАННЫХ СИГНАЛОВ | 1980 |
|
SU1840989A1 |
ТРЕХПРОВОДНОЙ ПЕРЕДАТЧИК | 1992 |
|
RU2111543C1 |
Система связи (10,96) временной области, в которой модулированные по времени (220) сигналы импульсного происхождения умножают (226) на эталонный сигнал (234), интегрируют (248), а затем демодулируют (254, 258, 260). За счет этого процесса получают полезные сигналы (262), которые в ином случае были бы скрыты шумом. 3 с. и 15 з.п. ф-лы, 10 ил.
Венедиктов М.Д | |||
и др | |||
Асинхронные адресные системы связи | |||
- М.: Связь, 1968, с.147 - 150, 159 - 162. |
Авторы
Даты
1998-02-20—Публикация
1989-03-10—Подача