СПОСОБ ПРОИЗВОДСТВА ТЕХНИЧЕСКОГО КРЕМНИЯ В ТРЕХФАЗНЫХ РУДОВОССТАНОВИТЕЛЬНЫХ ЭЛЕКТРОПЕЧАХ Российский патент 1998 года по МПК C22C33/04 

Описание патента на изобретение RU2107108C1

Изобретение относится к металлургии, конкретно к электротермическому производству технического кремния, и касается способа его производства в трехфазных рудовосстановительных электропечах с погруженной дугой.

Суммарный процесс углетермического восстановления кремния описывается реакцией
SiO2 + 2C → Si + 2CO,
протекающей в несколько стадий с промежуточным образованием карбида кремния (SiC) и с газообразной моноокиси кремния (SiO2).

Ванну электропечей при производстве кремния условно можно разделить на две зоны - внешнюю, по высоте загруженной шихты в ванну печей, и внутреннюю, соприкасающуюся непосредственно с участками действия (горения) электрических дуг на электродах.

Процессы образования кремния и моноокиси SiO происходят преимущественно во внутренней зоне ванны печей, характеризующейся повышенной концентрацией электроэнергии. При этом, получаемый кремний непрерывно, или периодически, удаляется из печей для последующей разделки в товарный вид, а моноокись SiO возгоняется и улавливается во внешней зоне ванны печей углеродом шихты за счет реакции образования карбида кремния
SiO + 2C → SiO + CO.

В соответствии с приведенной моделью процесса для снижения потерь кремния в виде SiO во внешней зоне ванны представляется особенно важным наряду с повышением реакционной способности углеродистых восстановителей в составе расходуемых шихт поддерживать необходимую высоту слоя загруженной шихты в ванне от уровня подины, зависящую от мощности печей и величин полезного фазного напряжения Uпф на электродах.

Для интенсификации процесса образования кремния во внутренней зоне печей важна организация надлежащего токораспределения и мощностей по участкам ванны, характеризующимся дуговой и шихтовой проводимостью
Наиболее близким по технической сущности и достигаемому результату является способ производства технического кремния в трехфазных рудовосстановительных печах разной мощности [1]. Известный способ включает непрерывную загрузку шихты, ее плавление и поддержание заданной высоты слоя шихты в ванне печей разной мощности.

Однако при производстве кремния недостаточно учитывают технологические особенности осуществляемого процесса. В частности, загрузку шихты и поддержание заданной высоты слоя расходуемой шихты в ванне печей над уровнем подины производят зачастую без учета реализуемого электрического режима эксплуатации печей, что уменьшает степень улавливания монооксида SiO во внешней зоне ванны печей и приводит к возрастанию потерь тепла и SiO с отходящими печными газами.

Существующие методы расчета электрорежимов печей, принимаемые в качестве основы для управления электрическими режимами эксплуатации печей, не учитывают особенности токораспределения по участкам ванны, присущих электропечам с явно выраженным дуговым режимом работы.

Согласно расчетной методике для всех бесшлаковых рудовосстановительных процессов, к каким относится производство кремния, взаимосвязь полезного фазного напряжения на электродах (Uпф, B) с полезной фазной мощностью Pпф, Bt) оценивается расчетной формулой (1)
Uпф = C1 • Pпф)1/3, B
где
C1 - константа уравнения, определяемая по статическим данным работы печей, принятых за "образцовые",
1/3 - показатель степени, отражающий объемное выделение энергии в ванне печей.

Приведенная формула противоречит тезису о том, что каждому рудовосстановительному процессу в электропечах должны соответствовать свои конкретные, но различные для разных процессов, соотношения между дуговой и шлаковой (или шихтовой) проводимостью в ванне печей.

Расчетная формула (1) не учитывает, кроме того, существенного влияния на электрорежимы печей кремния конструктивных размеров ванны - диаметра электродов, распада электродов и других параметров.

В зарубежной и отечественной литературе по электропечам широко применяется для оценки электрических режимов эксплуатации печей, аналитическая зависимость (2).

Rв • dэ = ρэф • ЭП = K, Ом • см,
где
Rв - Uпф/I - фазное электросопротивление ванны печей, мОм;
dэ - диаметр электрода, см;
ρэф - среднее эффективное электросопротивление шихты, Ом • см;
ЭП - критерий электрического подобия печей.

При соответствующем преобразовании формула (1) может быть приведена к виду
Uпф= C3/2I

•(Iэ)0,5,B (1 а)
в котором показатель степени при токовой нагрузке в электродах (IЭ, A) равен 0,5, а величина константы (C1)3/2, полученная путем статической обработки анализируемых режимных параметров печей по выплавке кремния, составляет (C1)3/2 = 0,3.

Что касается взаимосвязи Uпф= f(Iэ) согласно зависимости (2), то последняя оценивается формулой (2a):
Uпф=K•(Iэ/dэ)1,0, B,
с показателем степени при (Iэ) равным 1,0, и при статической величине константы "K" для печей кремния равной K = 0,135 Ом • см.

Технической задачей изобретения является повышение извлечения кремния из сырья и снижение расхода электроэнергии при его производстве.

Произведенный анализ и обобщение режимных параметров более двух десятков промышленных электропечей при выплавке кремния указывает на то, что на изменение величин фазного электросопротивления ванны в электропечах одновременное влияние оказывают рабочий ток в электродах (Iэ), диаметр электродов ((dэ) и расстояние между осями электродов (S) в ванне печей.

Установлено также, что режимные параметры печей, включая величины фазных электросопротивлений ванны (Rв), существенно зависят от степени интенсификации печей, оцениваемой по соотношениям фактически достигнутых плотностей тока в ванне, рассчитанных согласно формуле (3)
,
к усредненной для большинства зарубежных печей кремния величине.

iв ≈ 1,8 А/см2
Что касается поддержания высоты слоя шихты в ванне печей, необходимой для более полного улавливания возгонов монооксида SiO во внешней зоне ванны печей, то величина последней зависит от величин полезного фазного напряжения на электродах (Uпф) и допустимых градиентов напряжений по высоте ванны ( ΔUн ), изменяющихся согласно расчетной зависимости (4):
ΔUн = 0,2 + 0,05 (ib), В/см,
Решение поставленной технической задачи заключается в том, что величина полезного фазного напряжения в ванне печей поддерживают в пределах, определяемых формулой
Uпф= (0,36÷0,40)•i-0,39B

•(Iэ/dэ)0,87,B ,
при этом, высоту слоя загруженной шихты в ванне печей от уровня подины непрерывно поддерживают в пределах, определяемых формулой:
Hк=(1,05oC1,15)•Uпф•(0,2+ 0,05(ib))-1,0, см,
где
Uпф - полезное фазное напряжение на электродах, В;
Iэ - сила тока в электродах, А;
dэ - диаметр электродов, см;
iв - плотность тока в ванне по отношению величин (Iэ) к площади сечения реакционных зон в ванне, определяемой фактическими расстояниями между осями электродов (S) и диаметром электродов (dэ) согласно формуле

Hк - высота слоя шихты в ванне от уровня подины печей, см.

Известно, что за последние годы накоплен большой производственный опыт по промышленной эксплуатации отечественных трехфазных печей кремния мощностью 25 МВА.

Указанные электропечи оснащены угольными электродами диаметром dэ = 1205 мм, расположенными в ванне по вершинам равностороннего треугольника с расстояниями между осями электродов S = 2771 мм (при диаметре окружности их распада в ванне dр = 3200 мм).

Освоение и промышленная эксплуатация печей сопровождались испытаниями различных электрорежимов, в результате чего активная мощность печей из года в год постепенно возрастала от ≈ 15 до ≈ 18 МВТ при соответствующем увеличении токовой нагрузки в электродах от 55 oC 60 до ≈ 70 кА.

В качестве примеров применения предложенного способа определения режимных параметров электропечей в нижеследующей таблице приведены расчетные и фактические электрорежимы рассматриваемых электропечей при токовой нагрузке Iэ = 60 и 68 кА, а также соответствующие им фактические показатели печей, полученных за двух- трехнедельные периоды их непрерывной работы на расчетных режимах.

Как следует из данных таблицы, предложенный способ определения режимных параметров печей в зависимости от заданной токовой нагрузки в электродах обеспечивает получение более высоких величин (Uпф) по сравнению с ранее известными на основе расчетных формулы (1а) и (2а) / методами их определения, что способствует существенному повышению активности мощности печей, их производительности и улучшению других показателей работы печей, включая снижение расхода электроэнергии и повышение извлечения кремния из сырья.

Приведенные в таблице данные свидетельствуют о преимуществах предложенного способа определения режимных параметров процесса выплавки кремния в трехфазных электропечах по сравнению с ранее известными способами. Они позволяют оптимизировать процесс производства кремния с учетом конструктивных параметров печей и технологических особенностей осуществляемого процесса.

Похожие патенты RU2107108C1

название год авторы номер документа
СПОСОБ ПРОИЗВОДСТВА КРЕМНИЯ В ТРЕХФАЗНОЙ РУДОВОССТАНОВИТЕЛЬНОЙ ЭЛЕКТРОПЕЧИ 1996
  • Брусаков Ю.И.
  • Варюшенков А.М.
  • Салтыков А.М.
  • Жабо В.В.
  • Еремин В.П.
  • Щапов Е.Н.
  • Золотайко А.В.
RU2122970C1
СПОСОБ ПРОИЗВОДСТВА ТЕХНИЧЕСКОГО КРЕМНИЯ 1995
  • Елкин К.С.
  • Толстогузов Н.В.
  • Пак Р.В.
  • Елкин Д.К.
RU2078035C1
СПОСОБ ВЫПЛАВКИ КРЕМНИЯ И ЕГО СПЛАВОВ 1995
  • Козлов О.В.
  • Нехамин С.М.
  • Бастрыкин М.И.
  • Елкин К.С.
  • Пак Р.В.
  • Елкин Д.К.
RU2089498C1
СПОСОБ УПРАВЛЕНИЯ ПРОЦЕССОМ ПОЛУЧЕНИЯ ФОСФОРА В ЭЛЕКТРОТЕРМИЧЕСКОЙ ПЕЧИ 1994
  • Лифсон М.И.
  • Ершов В.А.
RU2081818C1
СПОСОБ МОНТАЖА ПОДИНЫ АЛЮМИНИЕВОГО ЭЛЕКТРОЛИЗЕРА 1994
  • Деревягин В.Н.
RU2088696C1
СПОСОБ ОБЖИГА ЭЛЕКТРОЛИЗЕРА ДЛЯ ПРОИЗВОДСТВА АЛЮМИНИЯ 1996
  • Горланов Е.С.
  • Зверев Ю.А.
RU2096530C1
СПОСОБ ПУСКА АЛЮМИНИЕВОГО ЭЛЕКТРОЛИЗЕРА ПОСЛЕ ОБЖИГА 1994
  • Деревягин В.Н.
RU2080416C1
СПОСОБ ПОЛУЧЕНИЯ КРЕМНИЯ 1994
  • Леонов С.Б.
  • Зельберг Б.И.
  • Дошлов О.И.
  • Ратманов А.В.
  • Кривых В.А.
  • Шапов Е.Н.
  • Еремин В.П.
  • Коновалов Н.П.
RU2082670C1
ЭЛЕКТРОДНАЯ МАССА ДЛЯ САМООБЖИГАЮЩИХСЯ ЭЛЕКТРОДОВ РУДОВОССТАНОВИТЕЛЬНЫХ ПЕЧЕЙ И СПОСОБ ЕЕ ПОЛУЧЕНИЯ 1997
  • Тимпанова Ж.Л.
  • Немировский И.Р.
  • Арлиевский М.П.
  • Кисилев А.М.
  • Сапов Ю.Н.
  • Дерябин А.С.
  • Лифсон М.И.
  • Маргулис С.З.
  • Ровинский В.А.
  • Богданов Л.А.
RU2121989C1
КАТОДНОЕ УСТРОЙСТВО АЛЮМИНИЕВОГО ЭЛЕКТРОЛИЗЕРА 1995
  • Деревягин В.Н.
RU2095485C1

Иллюстрации к изобретению RU 2 107 108 C1

Реферат патента 1998 года СПОСОБ ПРОИЗВОДСТВА ТЕХНИЧЕСКОГО КРЕМНИЯ В ТРЕХФАЗНЫХ РУДОВОССТАНОВИТЕЛЬНЫХ ЭЛЕКТРОПЕЧАХ

Изобретение относится к металлургии, конкретно к электротермическому производству технического кремния. При производстве технического кремния непрерывно загружают шихту в электропечь и поддерживают высоту слоя шихты над подиной в ванне печи в зависимости от полезного фазного напряжения на электродах и плотности тока в ванне печи. Снижается расход электроэнергии и повышается извлечение кремния из сырья. 1 табл.

Формула изобретения RU 2 107 108 C1

Способ производства технического кремния в трехфазных рудовосстановительных электропечах разной мощности, включающий непрерывную загрузку шихты и поддержание заданной высоты слоя шихты в ванне печи, отличающийся тем, что определяют в ванне печи плотность тока iВ и величину полезного фазного напряжения на электродах Uпф по соответствующим выражениям

Uпф= (0,36÷0,40)•i-0,39в

•(Iэ/dэ)0,87, B,
где Iэ - сила тока в электродах, А;
dэ - диаметр электродов, см;
S - фактическое расстояние между осями электродов, см,
и заданную высоту слоя шихты в ванне печи от уровня подины Нк поддерживают в пределах, определяемых соотношением
0

Документы, цитированные в отчете о поиске Патент 1998 года RU2107108C1

Гасик М.И
и др
Электрометаллургия ферросплав, Киев, Вища школа, 1983, с
Контрольный стрелочный замок 1920
  • Адамский Н.А.
SU71A1

RU 2 107 108 C1

Авторы

Брусаков Ю.И.

Варюшенков А.М.

Салтыков А.М.

Жабо В.В.

Еремин В.П.

Щапов Е.Н.

Золотайко А.В.

Даты

1998-03-20Публикация

1996-10-04Подача