Изобретение относится к физике и может найти применение в квантовой акустике для изучения взаимодействия квантов упругих возмущений с электронами, магнонами и другими элементарными возбуждениями в кристаллах.
В настоящее время известен способ генерации колебаний УСВЧ диапазона частот, включающий в себя возбуждение пьезоэлектрических кристаллов высокочастотным электромагнитным полем [1], для чего СВЧ-радиоизлучение направляют, например, через преобразователь на основе пленки ZnO на кристалл LiNbO.
Известен способ генерации звуковых колебаний с помощью вынужденного рассеяния Мандельштамма-Бриллюэна, заключающийся в облучении среды мощным световым потоком, например от лазера, сфокусированным в небольшую область внутри образца [2].Однако для достижения порога вынужденного рассеяния Мандельштамма-Бриллюэна необходимы значительные мощности.
Наиболее близким по технической сущности к изобретению является способ возбуждения акустических колебаний УСВЧ диапазона частот и нижней части диапазона гиперзвуковых частот под воздействием электромагнитного излучения, интенсивность которого имеет пространственную периодичность в объеме среды [3] . Звуковые колебания с длиной волны, равной периоду интерференции двух, падающих на среду световых пучков, возникают за счет нелинейных эффектов поглощения и электрострикции.
Недостатком способа является необходимость использования для облучения среды когерентного электромагнитного излучения, невозможность создания одинакового пространственно-периодического распределения плотности излучения во всем объеме среды и, следовательно, сложность получения когерентных звуковых колебаний, а также невозможность получения достаточно мощных когерентных колебаний гиперзвуковых частот в диапазоне 1010-1013 Гц за счет нелинейных эффектов поглощения и электрострикции.
Целью изобретения является снижение требований к когерентности электромагнитного излучения, воздействующего на среду, и обеспечение возможности получения достаточно мощных когерентных звуковых колебаний вплоть до диапазона 1010-1013 Гц.
Поставленная цель достигается тем, что в качестве среды используют кристалл с активатором (примесями), помещенный в оптический и одновременно в гиперзвуковой резонатор, на кристалл воздействуют электромагнитным излучением оптического диапазона волн и в режиме одновременной генерации электромагнитных колебаний другой частоты создают избыточную по сравнению с равновесной концентрацию возбужденных атомов или других частиц и их систем в нижнем лазерном состоянии, обеспечивая неоптический переход с него в основное состояние и приводя к резонансным колебаниям решетки кристалла и генерации колебаний гиперзвуковых частот.
Изобретение поясняется на фиг. 1-3.
Возможная схема квантового генератора гиперзвуковых частот показана на фиг. 1. На ней обозначены: 1 -кристалл квантового генератора с активатором, 2 - отражающее зеркало резонатора электромагнитного излучения, 3 - обработанный торец кристалла, отражающий электромагнитное излучение и излучение гиперзвуковых частот, 4 - обработанный торец кристалла, отражающий излучение гиперзвуковых частот, 5 - источник оптической накачки, 6 - согласующие пленки.
В квантовом генераторе гиперзвуковых частот с помощью источника оптической накачки 5 осуществляют облучение кристалла с активатором (примесями) электромагнитным излучением. Излучение накачки, поглощающееся частицами активной среды, переводит их в возбужденное состояние. При этом подобранный спектральный состав излучения источника накачки и определенное соотношение между вероятностями поглощения на переходах, ведущих к заселению и обеднению уровней активного вещества, приводит к преимущественному заселению верхних уровней. При наличии резонатора электромагнитного поля, образованного отражающим зеркалом 2 и торцом кристалла 3, в результате стимулированного электромагнитным полем резонатора переходом частиц с верхнего лазерного состояния на нижнее лазерное состояние генератор через зеркало 2 излучает электромагнитное поле, частота которого не совпадает с частотой излучения накачки. В процессе излучения электромагнитного поля при достаточно большой интенсивности излучения поля накачки наряду с преимущественным заселением верхнего лазерного состояния будет иметь место и преимущественное, по сравнению с основным состоянием, заселение нижнего лазерного состояния, совпадающего с возбужденным состоянием примесь-решетка кристалла, расположенном выше основного состояния.
Последующий неоптический стимулированный переход атомов, других частиц или их систем, вызванный колебаниями решетки кристалла на частоте резонатора гиперзвуковых частот, образованного торцами кристалла 3 и 4, приводит к резонансным колебаниям решетки и излучению гиперзвуковых волн через согласующие пленки 6.
При отсутствии согласующих пленок 6 возникающие резонансные колебания кристалла могут приводить к его разрушению, что практически часто и имеет место в твердотельных оптических квантовых генераторах.
Наиболее вероятно излучение гиперзвуковых волн можно получить в кристаллах с активаторами, имеющими четырехуровневую схему рабочих состояний.
На фиг. 2 в качестве примера показана диаграмма энергетических уровней двухвалентного редкоземельного иона D
Wн - плотность излучения накачки;
B14 - коэффициент Энштейна, соответствующий поглощению электромагнитного поля накачки;
B41 - коэффициент Энштейна, соответствующий излучению электромагнитного поля накачки;
Ni - населенности i-го состояния;
γi - суммарная вероятность обеднения i-го состояния.
Накачка генератора на CaF2:D
Действительно, систему исходных кинетических уравнений для процессов, имеющих место при накачке кристалла электромагнитным полем, можно записать в виде:
N1 + N2 + N3 + N4 = N
Известное решение данной системы уравнений позволяет представить зависимости населенности состояний от плотности излучения накачки в виде:
В данных уравнениях символ γ обозначает суммарную вероятность объединения i-го состояния, A = γ3γ2γ4, Г = 2γ2γ3+γ42γ3+γ43γ2+γ32γ43. .
Возможный вид этих зависимостей показан на фиг.3. Из этих зависимостей видно, что при плотности накачки
населенность уровня 2 будет превышать населенность уровня 1.
Неоптический переход системы из возбужденного состояния примесь-решетка в основное состояние при наличии в квантовом генераторе резонатора гиперзвуковых волн, образованного обработанными торцами кристалла, приведет к резонансным колебаниям решетки и генерации достаточно мощных когерентных колебаний гиперзвуковых частот.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ И УСТРОЙСТВО ГЕНЕРАЦИИ КВАНТОВЫХ ПУЧКОВ | 2010 |
|
RU2433493C1 |
Способ генерации излучения газодинамического лазера интегрированного в единую конструкцию газотурбинного двигателя и газотурбинный двигатель для его осуществления | 2018 |
|
RU2702921C1 |
СПОСОБ ГЕНЕРАЦИИ НЕПРЕРЫВНОГО КОГЕРЕНТНОГО ИЗЛУЧЕНИЯ С ЧАСТОТОЙ 2,52 ТГЦ | 2020 |
|
RU2752019C1 |
ПРЕОБРАЗОВАТЕЛЬ НА ОСНОВЕ КВАНТОВЫХ МОЛЕКУЛ | 2009 |
|
RU2444811C2 |
СПОСОБ И УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ ОПТИЧЕСКОГО ДИАПАЗОНА | 2003 |
|
RU2267842C2 |
ТВЕРДОТЕЛЬНЫЙ ЛАЗЕР ЖЕЛТОГО СПЕКТРАЛЬНОГО ДИАПАЗОНА | 2000 |
|
RU2178939C1 |
ДИПОЛЬНЫЙ НАНОЛАЗЕР | 2009 |
|
RU2391755C1 |
УЗКОПОЛОСНЫЙ КОЛЬЦЕВОЙ ВОЛОКОННЫЙ ЛАЗЕР | 2014 |
|
RU2554337C1 |
СПОСОБ ГЕНЕРАЦИИ КОГЕРЕНТНОГО ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ И ДИПОЛЬНЫЙ НАНОЛАЗЕР НА ЕГО ОСНОВЕ | 2003 |
|
RU2249278C2 |
УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ ОПТИЧЕСКОГО ДИАПАЗОНА | 2005 |
|
RU2285986C1 |
Изобретение относится к физике и может найти применение в квантовой акустике для изучения взаимодействия квантов упругих возмущений с электронами, магнонами и другими элементарными возбуждениями в кристаллах. Сущность изобретения: в качестве среды используют кристалл с активатором (примесями), помещенный в оптический и одновременно в гиперзвуковой резонатор, на кристалл воздействуют электромагнитным излучением оптического диапазона волн и в режиме одновременной генерации электромагнитных колебаний другой частоты создают избыточную по сравнению с равновесной концентрацию возбужденных атомов или других частиц и их систем в нижнем лазерном состоянии, обеспечивая неоптический переход с него в основное состояние и приводя к резонансным колебаниям решетки кристалла и генерации колебаний гиперзвуковых частот. 3 ил.
Способ генерации колебаний гиперзвуковых частот, включающий воздействие на среду электромагнитным излучением, отличающийся тем, что в качестве среды используют кристалла с активатором (примесями), помещенный в оптический и одновременно в гиперзвуковой резонатор, на кристалл воздействуют электромагнитным излучением оптического диапазона волн, и в режиме одновременной генерации электромагнитных колебаний другой частоты, создают избыточную по сравнению с равновесной концентрацию возбужденных атомов или других частиц и их систем в нижнем лазерном состоянии, обеспечивая неоптический переход с него в основное состояние и приводя к резонансным колебаниями решетки кристалла и генерации колебаний гиперзвуковых частот.
Авторы
Даты
1998-05-10—Публикация
1996-09-27—Подача