Изобретение относится к измерительной технике, в частности к средствам измерения деформаций конструкций при испытаниях на прочность в условиях повышенных температур.
Область применения - авиастроение, машиностроние, судостроение, атомная энергия и др.
При испытаниях на прочность материалов и конструкций необходимо производить измерения деформаций при высоких температурах до 500 - 1000oC в широком диапазоне диаграммы "σ-ε" . При этом важным требованием к измерительным устройствам является обеспечение высокой точности измерения и достоверности получаемой информации. Высокая точность измерения деформаций конструкций в значительной мере зависит от разброса номинальных сопротивлений тензорезисторов в партии, стабильности измерительных характеристик во времени, обеспечения компенсации температурных приращений тензорезисторов, помехоустойчивости от воздействия электромагнитных помех, защищенности от воздействия агрессивных сред, обеспечения технологичности монтажа на поверхности конструкции, габаритных размеров и др.
Анализ технических характеристик показал, что известные измерительные устройства ряду указанных требований полностью не отвечают, поэтому создание и внедрение в практику экспериментальных исследований предлагаемого устройства является актуальной технической и экономической задачей.
Известны наклеиваемые термостойкие тензорезисторы (Баранов А.Н., Белозеров Л. Г. , Ильин Ю.С., Кутьинов В.Ф. Статические испытания на прочность сверхзвуковых самолетов. М.: Машиностроение, 1974, с. 273 - 303 и Клокова Н. П. Тензорезисторы. М.:Машиностроение, 1990, с. 194 - 208), содержащие диэлектрическую подложку, чувствительную решетку и выводные проводники.
Недостатками известных термостойких тензорезисторов являются ограниченный диапазон измерения деформаций (±200•10-5 отн.ед), отсутствие схемой компенсации температурного приращения сопротивления, наличие значительных погрешностей измерения при электромагнитных помехах, применение косвенного метода градуирования для определения чувствительности и др.
Известен высокотемпературный тензоретистор типа НМТ-450, принятый за прототип, предназначенный для измерения деформаций в диапазоне температур 20 - 450oC ("Тензорезистор высокотемпературный типа НМТ-450", техническое описание и паспорт, Краснодарский завод тензометрических приборов; [1, 2]), содержащий плоскую металлическую подложку и наклеенный на ее внешней поверхности термостойкий тензорезистор. Металлическая подложка после тепловой обработки совместно с тензорезистором приваривается точечной сваркой на поверхности исследуемой конструкции.
Недостатками устройства являются ограниченный диапазон измерения деформаций (до ±200•10-5 отн.ед.), большое значение температурного приращения сопротивления (величина температурной характеристики при 450oC достигается 1400•10-5 отн. ед. ),большая собственная жесткость устройства на растяжение (сжатие), большое значение погрешности измерения при воздействии электромагнитных помех и др.
Задача изобретения состоит в расширении функциональных возможностей устройства, которое достигается путем увеличения диапазона измеряемых деформаций, повышения точности измерения, уменьшение погрешностей измерения от воздействия электромагнитных помех, сокращения эксплуатационных расходов на подготовку и проведение измерений, что является техническим результатом.
Технический результат достигается тем, что в устройстве для измерения деформаций при повышенных температурах, содержащем, плоскую металлическую подложку с наклеенным на внешней поверхности термостойким тензорезистором и измерительную аппаратуру, упругая подложка выполнена выпуклой в виде арки из пластины термостойкого неметаллического материала толщиной 0,1 - 0,2 мм с наклеенными на ее внешней и внутренней поверхностях двумя или четырьмя термостойкими тензорезисторами, соединенными по схеме измерительного полумоста или моста, и термодатчиком, концы упругой подложки шарнирно оперты на узлы крепления, установленные в съемной монтажной рамке из материала, аналогичного материалу упругой подложки с отверстиями для штока градуировочного приспособления.
На фиг. 1 представлена конструкция измерительного устройства; на фиг. 2 - электрическая схема устройства и подключения его к измерительной аппаратуре; на фиг. 3 - градуировочная характеристика макета устройства при номинальной температуре при работе с измерительной системой СИИТ-3.
Предлагаемое устройство (фиг. 1) состоит из упругой подложки 1, термостойких тензорезисторов 2, узел крепления 3, легкосъемной монтажной рамки - корпуса 4, соединительных проводов 5, клеммных колодочек 6 и термодатчика 7.
Упругая подложка 1 выполнена из тонкой пластины толщиной 0,1 - 0,2 мм из термостойкого неметаллического материал, например кварцевого стекла, керамики или ситалла, выгнутой в виде арки, опертой шарнирно по концам в узлах крепления 3.
В средней части пластины на внешней и внутренней поверхностях наклеены по одному или по два термостойких тензорезисторов 2, соединенных проводами 5 по схеме измерительного полумоста или моста и приваренных электродуговой сваркой к клеммным колодочкам 6.
Для удобства наклейки тензорезисторов на упругой подложке, хранения устройства и его монтажа на поверхности исследуемой конструкции 10 с заданной базой измерения "Б" в устройстве предусмотрена легкосъемная базовая монтажная рамка 4 из того же материала, что и упругая подложка, в которую устанавливаются узлы крепления 3 с упругой подложкой 1 и тензорезисторами 2. Рамка состоит из двух половин, соединяемых при помощи болтов 8. В опорных стенках рамки предусмотрены отверстия 9 для штока градуировочного приспособления.
Для определения температуры упругой подложки и тензодатчиков в процессе тепловой обработки и проведения измерений в устройстве наклеен малоинерционный термодатчик 7.
Установка устройства на поверхности исследуемой конструкции осуществляется путем точечной электроразрядной сварки или приклейки термостойким цементом (клеем) узлов крепления 3.
С целью расширения температурного диапазона измерения, обеспечения стабильных измерительных характеристик, повышения точности измерения при высоких температурах в устройстве упругий элемент изготавливается из неметаллических материалов, например боросиликатных, алюмосиликатных или кварцевых стекол (tmaxc до 1000oC), ситалловые материалы (tmaxc до 700 - 750oC), керамические материалы (tmaxc до 1200 - 1600oC). Указанные материалы обладают сравнительно высокой прочностью на изгиб, высоким модулем упругости, высокой стойкостью к окислению и воздействию термоударов (см. Материалы в приборостроении и автоматике, 2-е издание. Под ред. Ю.М. Пятина.М.: Машиностроение, 1982, с. 419).
Применение шарнирного опирания концов упругого элемента обеспечивает деформирование его по радиусу дуги, уменьшает уровень местных концентраций напряжений в зоне опирания, упрощает технологию изготовления устройства, снижает погрешности измерения.
В качестве первичных преобразований в устройстве применяются термостойкие тензорезисторы, от температурного диапазона которых в значительной мере зависит рабочий диапазон температур устройства.
Так, например, для устройства с рабочим диапазоном температур 0 - 600oC могут быть использованы тензорезисторы типа ВТ-ХЮ (см. Баранов А.Н., Белозеров Л.Г., Ильин Ю.С., Кутьинов В.Ф. Статические испытания на прочность сверхзвуковых самолетов. М.: Машиностроение, 1974, с. 280 - 284).
После наклейки и монтажа тензорезисторов ВТ-ХЮ на упругой подложке устройство вместе со съемной монтажной рамкой подвергается предварительной тепловой обработке по довольно сложной технологии с максимальной температурой 550oC. Эта операция позволяет избежать предварительного нагревания конструкции до начала испытаний и, соответственно, снизить эксплуатационные расходы на подготовку испытаний и избежать возможного снижения прочности конструкционного материала.
Измерительный полумост или мост устройства, состоящий из двух или четырех тензорезисторов 2, через измерительный коммутатор 11, (см. фиг. 2) подключается к измерительной системе 12. Для управления измерительной системой, сбора, обработки и представления информации о деформированном состоянии конструкции используется ЭВМ 13 (см. Система измерительная тензометрическая СИИТ-3. Руководство по эксплуатации, 4Т2.739.ООЧ РЭ, Краснодарский завод "Тензоприбор" и описание компьютера IBM PC/AT типа 286).
Решение поставленных задач достигается за счет
применения упругой подложки, выполненной из термостойкого неметаллического материала, например тонкой пластины из кварцевого стекла, керамики или ситалла в виде двухпроводной арки;
шарнирного стирания концов упругой подложки в узлах крепления;
наклейки на поверхности упругой подожки двух или четырех термостойких тензорезисторов, соединяемых по схеме измерительного полумоста или моста;
применения для изготовления, хранения и монтажа легкосъемной монтажной базовой рамки из материала, аналогичного материалу упругой подложки;
избежания предварительной тепловой обработки до высоких температур конструкции после монтажа на ней измерительного устройства;
обеспечения индивидуальной градуировки каждого устройства;
обеспечения многократного применения устройства при различных испытаниях и возможности проведения повторных градуировок.
Предлагаемое устройство работает следующим образом.
Устройство до монтажа на исследуемую конструкцию устанавливают в градуировочное приспособление и, задавая измерительным штоком микрометра через отверстие 9 (см. фиг. 1) в монтажной рамке 4 нормированные значения перемещений f одному из узлов крепления устройства, определяют зависимость выходного сигнала устройства A от величины перемещения A = ϕ(f) и, соответственно, коэффициент преобразования K. Аналогично может быть проградуировано устройство по величине задаваемой деформации на соответствующем градуировочном приспособлении, т.е. A = ϕ(ε) .
Затем предлагаемое устройство укрепляет на поверхности конструкции в исследуемой зоне 10 и подключает к измерительной аппаратуре 12 через коммутатор 11 (см. фиг. 2) например, к системе СИИТ-3.
При испытаниях конструкция нагружается и нагревается, что приводит к деформированию ее элементов и, соответственно, изменению начальной базы измерения Б (см. фиг. 1) устройства. При измерении базы измерения (изменение расстояния между узлами крепления 3) деформируется упругая подложка 1, что, в свою очередь, деформирует чувствительную решетку тензорезисторов 2, наклеенных на упругой подложке. При этом изменяется начальное сопротивление тензорезисторов R на величину ± ΔR . Например, при полумостовой схеме включения тензорезисторов и увеличении базы измерения сопротивление тензорезистора R1, наклеенного на выпуклой поверхности упругого элемента, уменьшается на величину ΔR1, а сопротивление тензорезистора R, наклеенного на вогнутой поверхности, увеличивается на ΔR2 , что приводит к возникновению в измерительной диагонали моста электрического сигнала, пропорционального величине деформации поверхности конструкции, который регистрируется аппаратурой 12 и обрабатывается ЭВМ 13 с учетом градуировочной характеристики A = ϕ(f) или A = ϕ(εср) .
Величина выходного сигнала измерительного моста при двух активных тензорезисторах равна
ΔU = U•S•εср,
где
U - напряжение питания моста;
S - коэффициент тензочувствительности тензорезисторов;
εср - средняя деформация упругого элемента.
В качестве примера на фиг. 3 приведена зависимость для макетного образца устройства с базой измерения, равной 25 мм, при нормальной температуре для упругих элементов с двумя тензорезисторами, включенными по схеме измерительного моста, и подключенного к системе СИИТ-3.
Применение предложенных устройств обеспечит возможность измерения деформаций при испытаниях гиперзвуковых летательных аппаратов при нестационарных тепловых режимах в диапазоне температур до 500 - 1000oC, расширение диапазона измерения деформаций в 10 - 20 раз, увеличение точности измерения в 1,5 - 2 раза в условиях нестационарных тепловых процессов и сократит в 2-2,5 раза эксплуатационные расходы на подготовку и проведение испытаний.
Устройство предназначено для измерения деформаций конструкций летательных аппаратов при испытаниях на прочность в условиях повышенных температур. Устройство состоит из упругой подложки, выполненной из пластины термостойкого неметаллического материала, выгнутой в виде двухопорной арки. На внешней и внутренней поверхностях подложки наклеены два или четыре термостойких тензорезистора, соединенных по схеме измерительного полумоста или моста. Концы упругой подложки шарнирно оперты на узлы крепления, установленные в съемной монтажной рамке, выполненной из материала упругой подложки. Упругая подложка может быть выполнена из кварцевого стекла или термостойкой керамики. 2 з.п. ф-лы, 3 ил.
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Серьезнов А.Н | |||
Измерения при испытаниях конструкций на прочность | |||
- М.: Машиностроение, 1976, с | |||
Фальцовая черепица | 0 |
|
SU75A1 |
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Клокова Н.П | |||
Тензорезисторы | |||
- М.: Машиностроение, 1990, с | |||
Способ образования азокрасителей на волокнах | 1918 |
|
SU152A1 |
Авторы
Даты
1998-05-10—Публикация
1996-07-23—Подача