СПОСОБ ИЗМЕРЕНИЯ ПРОХОДНОГО СЕЧЕНИЯ ТРУБОПРОВОДОВ Российский патент 1998 года по МПК G01B17/02 

Описание патента на изобретение RU2115090C1

Изобретение относится к области ультразвукового контроля изделий и может быть использовано для измерения проходного сечения труб с внутренними отложениями.

Решаемая техническая задача заключается в повышении точности измерения проходного сечения трубопровода с учетом отложений на внутренних стенках трубы и в проведении измерения без прерывания процесса эксплуатации трубопровода.

Решаемая техническая задача достигается тем, что в способе измерения проходного сечения трубопроводов с помощью первого ультразвукового преобразователя, размещенного на внешней поверхности трубопровода, вводят ультразвуковые колебания по нормали к наружной поверхности трубопровода через стенку трубопровода, отложения на внутренней поверхности трубопровода и проходное сечение, заполненное жидкостью, принимают этим же ультразвуковым преобразователем отраженные от границы раздела между жидкостью и противоположной внутренней поверхностью трубы с отложениями ультразвуковые колебания и измеряют время t1 их прохождения, после этого с помощью второго ультразвукового преобразователя, установленного на внешней поверхности трубопровода диаметрально противоположно первому ультразвуковому преобразователю, излучают ультразвуковые колебания в сторону первого ультразвукового преобразователя, принимают отраженные от границы раздела между жидкостью и противоположной внутренней поверхностью трубы с отложениями ультразвуковые колебания и измеряют время t2 их прохождения, затем измеряют время t3 прохождения ультразвуковых колебаний от первого до второго ультразвукового преобразователя и проходное сечение трубы определяют по формуле

где
D - диаметр проходного сечения трубопровода;
C - скорость ультразвука в жидкости.

Измерения могут проводить при заполнении трубопровода водой.

На чертеже изображено устройство, с помощью которого может быть осуществлен данный способ, содержащее генератор 1 возбуждающих импульсов, выход которого соединен с входом коммутатора 2, с ним соединены первый 3 и второй 4 ультразвуковые преобразователи, выход которого соединен с усилителем 5, его выход в свою очередь, подключен к входу осциллографа 6, вход синхронизации которого подключен к генератору 1 возбуждающих импульсов. Первый ультразвуковой преобразователь 3 закреплен на внешней поверхности трубопровода 7, заполненного жидкостью 8, например водой, и имеющей отложения 9 на внутренней поверхности трубопровода. Второй ультразвуковой преобразователь 4 закреплен на диаметрально противоположной внешней поверхности трубопровода 7 диаметрально противоположно первому ультразвуковому преобразователю 3.

Рассмотрим осуществление способа с помощью описанного устройства.

Процесс измерения можно подразделить на три этапа. На первом этапе генератор 1 возбуждающих импульсов вырабатывает импульсы, которые через коммутатор 2 подаются на первый ультразвуковой преобразователь 3, возбуждающий в трубопроводе 7 ультразвуковые колебания. Этот же первый ультразвуковой преобразователь 3 принимает отраженные от границы раздела жидкостью и противоположной внутренней поверхностью трубы с отложениями ультразвуковые колебания, которые через коммутатор 2 подаются на вход усилителя 5, а затем на осциллограф 6, работающий в режиме внешней синхронизации от генератора 1 возбуждающих импульсов. По осциллографу 6 измеряется время t1 прохождения ультразвуковых колебаний от первого ультразвукового преобразователя 3 до границы раздела между жидкостью и противоположной внутренней поверхностью трубопровода с отложениями и обратно.

На втором этапе импульсы генератора 1 возбуждающих импульсов через коммутатор 2 подаются на второй ультразвуковой преобразователь 4, установленный на внешней поверхности трубопровода диаметрально противоположно первому ультразвуковому преобразователю 3. Второй ультразвуковой преобразователь 4 излучает ультразвуковые колебания в сторону первого ультразвукового преобразователя 3, принимает отраженные от границы раздела между жидкостью и противоположной внутренней поверхностью трубы с отложениями ультразвуковые колебания, которые через коммутатор 2 подаются на вход усилителя 5, а затем на осциллограф 6, работающий в режиме внешней синхронизации от генератора 1 возбуждающих импульсов. По осциллографу 6 измеряется время t2 прохождение ультразвуковых колебаний от второго преобразователя 4 до границы раздела между жидкостью и противоположной внутренней поверхностью трубы с отложениями и обратно.

На третьем этапе импульсы с генератора 1 возбуждающих импульсов через коммутатор 2 подают на первый ультразвуковой преобразователь 3, а в качестве приемного используют второй ультразвуковой преобразователь 4, сигнал с которого через коммутатор 2 подают на усилитель 5 и далее на осциллограф 6 и измеряют время t3 прохождения ультразвуковых колебаний от первого ультразвукового преобразователя 3 до второго ультразвукового преобразователя 4, проходное сечение трубы определяют по формуле

где
D - диаметр проходного сечения трубопровода;
t1 - время прохождения ультразвуковых колебаний от первого преобразователя до границы раздела между жидкостью и противоположной внутренней поверхностью трубы с отложениями и обратно;
t2 - время прохождения ультразвуковых колебаний от второго преобразователя до границы раздела между жидкостью и противоположной внутренней поверхностью трубы с отложениями и обратно;
t3 - время прохождения ультразвуковых колебаний от первого до второго преобразователей;
C - скорость ультразвука в жидкости.

Похожие патенты RU2115090C1

название год авторы номер документа
СПОСОБ ИЗМЕРЕНИЯ ТОЛЩИНЫ СЛОЯ ОТЛОЖЕНИЙ НА ВНУТРЕННИХ СТЕНКАХ ВОДОПРОВОДНЫХ ТРУБ 1994
  • Саиткулов В.Г.
  • Бурлаков Д.Л.
RU2098754C1
СПОСОБ ИЗМЕРЕНИЯ МАЛЫХ ОТНОШЕНИЙ СИГНАЛ/ШУМ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1993
  • Ильин А.Г.
  • Польский Ю.Е.
RU2072522C1
СПОСОБ КОНТРОЛЯ ТОКА 1997
  • Саиткулов В.Г.
  • Васильев Д.В.
RU2140655C1
УЛЬТРАЗВУКОВОЙ ЭХОИМПУЛЬСНЫЙ ТОЛЩИНОМЕР 1994
  • Саиткулов В.Г.
  • Кузьмин А.Н.
RU2082161C1
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ВИБРОПЕРЕМЕЩЕНИЙ 1994
  • Наумов В.П.
RU2087876C1
МОСТ С ПОЛУПРОВОДНИКОВЫМ ТЕРМОРЕЗИСТОРОМ 1992
  • Нотариус М.Д.
  • Ротберт И.Л.
  • Ференец В.А.
RU2054641C1
СПОСОБ УПРАВЛЕНИЯ СПЕКТРОМ ВОЗБУЖДАЕМОЙ СЛУЧАЙНОЙ ОДНОМЕРНОЙ ВИБРАЦИИ 1997
  • Баширов З.А.
  • Тагиров Ш.Ф.
RU2129259C1
ЦИФРОВОЙ ЭЛЕКТРОПРИВОД ПОСТОЯННОГО ТОКА С ДВОЙНОЙ ШИРОТНО-ИМПУЛЬСНОЙ МОДУЛЯЦИЕЙ 1992
  • Салимов Р.И.
  • Мастюков Ч.И.
RU2037263C1
ВИХРЕВОЙ РАСХОДОМЕР 1995
  • Мартынов Е.В.
  • Краснов Ю.Н.
  • Колчин А.В.
  • Алексеев В.П.
  • Репин И.Н.
RU2097706C1
УЛЬТРАЗВУКОВОЙ СПОСОБ ОПРЕДЕЛЕНИЯ ТОЛЩИНЫ ИЗДЕЛИЯ 1999
  • Зайнуллин Ф.Р.
  • Саиткулов В.Г.
RU2167393C2

Реферат патента 1998 года СПОСОБ ИЗМЕРЕНИЯ ПРОХОДНОГО СЕЧЕНИЯ ТРУБОПРОВОДОВ

Использование: для измерения проходного сечения труб с внутренними отложениями. Сущность изобретения: способ измерения проходного сечения трубопроводов заключается в том, что с помощью первого ультразвукового преобразователя, размещенного на внешней поверхности трубопровода, вводят ультразвуковые колебания по нормали к наружной поверхности трубопровода через стенку трубопровода, отложения на внутренней поверхности трубопровода и проходное сечение, заполненное жидкостью, принимают этим же ультразвуковым преобразователем отраженные от границы раздела между жидкостью и противоположной внутренней поверхностью трубы с отложениями ультразвуковые колебания и измеряют время t1 их прохождения, после этого с помощью второго ультразвукового преобразователя, установленного на внешней поверхности трубопровода диаметрально противоположно первому ультразвуковому преобразователю, излучают ультразвуковые колебания в сторону первого ультразвукового преобразователя, принимают отраженные от границы раздела между жидкостью и противоположной внутренней поверхностью трубы с отложениями ультразвуковые колебания и измеряют время t2 их прохождения, затем измеряют время t3 прохождения ультразвуковых колебаний от первого до второго ультразвукового преобразователя и проходное сечение трубы определяют по формуле D = [(t1 + t2 - 2t3)c]/2, где D - диаметр проходного сечения трубопровода; С - скорость ультразвука в жидкости. Измерения могут проводить при заполнении трубопровода водой. Технический результат заключается в повышении точности измерения проходного сечения трубопровода и в проведении измерения без прерывания процесса эксплуатации трубопровода. 1 ил.

Формула изобретения RU 2 115 090 C1

1. Способ измерения проходного сечения трубопроводов, заключающийся в том, что с помощью первого ультразвукового преобразователя, размещенного на внешней поверхности трубопровода, вводят ультразвуковые колебания по нормали к наружной поверхности трубопровода через стенку трубопровода, отложения на внутренней поверхности трубопровода и проходное сечение, заполненное жидкостью, принимают этим же ультразвуковым преобразователем отраженные от границы раздела между жидкостью и противоположной внутренней поверхностью трубы с отложениями ультразвуковые колебания и измеряют время t1 их прохождения, после чего с помощью второго ультразвукового преобразователя, установленного на внешней поверхности трубопровода диаметрально противоположно первому ультразвуковому преобразователю, излучают ультразвуковые колебания в сторону первого ультразвукового преобразователя, принимают отраженные от границы раздела между жидкостью и противоположной внутренней поверхности трубы с отложениями ультразвуковые колебания и измеряют время t2 их прохождения, затем измеряют время t3 прохождения ультразвуковых колебаний от первого до второго ультразвукового преобразователя и проходное сечение трубы определяется по формуле

где D - диаметр проходного сечения трубопровода;
C - скорость ультразвука в жидкости.
2. Способ по п.1, отличающийся тем, что измерения проводят при заполнении трубопровода водой.

RU 2 115 090 C1

Авторы

Саиткулов В.Г.

Бурлаков Д.Л.

Даты

1998-07-10Публикация

1994-11-30Подача