Изобретение относится к очистке газа /воздуха/ и может быть использовано в воздухоочистителях силовых установок с поршневыми и газотурбинными двигателями транспортных средств, в системах кондиционирования воздуха, в стационарных энергетических установках, на газоперекачивающих и компрессорных станциях и т.д.
Преимущественное использование предлагаемого изобретения в воздухоочистителях газотурбинных двигателей стационарных установок.
К инерционным воздухоочистителям газотурбинных установок предъявляются высокие требования в части гидравлического сопротивления, эффективности очистки и удельных габаритных объемов.
В зависимости от условий эксплуатации и области применения воздухоочистителей указанные выше требования могут изменяться в широких пределах. Так, например, гидравлическое сопротивление воздухоочистителей ГТД в зависимости от условий применения находится в пределах 50...500 мм вод.ст., а эффективность очистки загрязненного воздуха может изменяться от 90 до 98%.
Известны воздухоочистители, предназначенные для очистки воздуха от пыли и других материалов.
Такие воздухоочистители состоят обычно из корпуса в виде трубы, закручивающего аппарата на входе в виде лопаток или тангенциального патрубка, устройства очищенного воздуха /выхлопной трубы/, установленного концентрично в корпусе, и отвода загрязнителя /см. а.с. 1810679, кл. B 04 C 5/30, 1991, а. с. 443686, кл. B 04 C 5/14, 1975, патент США N 370730, кл. 55-410, 1973, патент Франции N 1320200, кл. B 01 D, 1963/.
Известны также воздухоочистители типа комбинированных прямоточных циклонов, предназначенных для очистки газов, с корпусом в виде конической тонкостенной трубы, сужающейся к выходу, лопаточного закручивающего аппарата, цилиндрической выхлопной трубы, установленной концентрично в корпусе и имеющей щелевые каналы вдоль ее образующей, а также канал /отвод/ для удаления загрязнителя, образованный корпусом и выхлопной трубой /см. патент США N 3019856 по НКИ 183-80, 1962/.
Устройство по патенту США N 3019856 является ближайшим аналогом изобретения.
Указанные выше воздухоочистители не обладают высокими параметрами по расходу воздуха, гидравлическому сопротивлению и эффективности очистки воздуха /газа/.
Так, устройства по патентам США N 3707830 и N 1320200 имеют высокое гидравлическое сопротивление закручивающего аппарата, а также низкую эффективность ввиду наличия в циклоне центрального вихря и открытого осевого входа в трубу очищенного воздуха.
Устройство по патенту США имеет высокое гидравлическое сопротивление входного закручивающего аппарата, ввиду малых проходных сечений входного закручивающего аппарата, т.к. он в значительной мере перекрывается трубой очищенного воздуха, а также в связи с тем, что каналы выхлопной трубы не профилированы с расширением их от входа к выходу.
Пылеуловители /циклоны/ по а.с. 1819679 и а.с. N 443686 не регламентируют геометрические соотношения элементов их конструкций. Такие циклоны, как правило, имеют достаточно высокое гидравлическое сопротивление.
На эффективность очистки и гидравлическое сопротивление инерционного воздухоочистителя наряду с его конструкцией существенную, а в некоторых случаях решающую роль оказывают геометрические соотношения элементов конструкции инерционного очистителя и их геометрическая форма.
Сущность предлагаемого изобретения заключается в том, что с целью получения оптимальных параметров очистителя по эффективности очистки и гидравлическому сопротивлению необходимо проходные сечения элементов воздухоочистителя: закручивающего аппарата, устройства очищенного воздуха и отвода загрязнителя выполнять в зависимости от размеров диаметра /площади/ диаметрального сечения корпуса очистителя.
Как известно, процесс сепарации твердых частиц в инерционных очистителях зависит от скоростей движения потока в нем, т.е. от проходных сечений его элементов.
Решающее влияние на эффективность сепарации оказывает скорость потока на входе в циклон, т.е. проходные сечения закручивающего аппарата на входе Fвх и выходе потока Fвых, ширина каналов b и высота h. Высокие параметры очистителя достигаются при соотношении суммарной площади каналов Fкан к диаметральному сечению корпуса Fкор Fкан/Fкор = 0,4-1,5 при отношении Fвх/Fвых= 1,2-2,0. В этом случае ширина b канала находится в пределах b = 0,01-0,030 диаметра корпуса, а высота каналов h = 0,2-0,8 диаметра корпуса.
Геометрические размеры и форма устройства выпуска очищенного воздуха /выхлопной трубы/, в свою очередь, связаны с размерами входного закручивающего аппарата и корпуса очистителя.
При суммарной площади каналов выпускной трубы на входе в трубу Fтр и соотношении Fтр/Fкан = 2,5-3,5 с расширением площади каналов выпускной трубы от входа к выходу в соотношении Fвх/Fвых = 0,1-0,4 достигается лучшая эффективность сепарации частиц пыли.
Отвод загрязнителя предлагается выполнить в виде тангенциального или кольцевого канала. При этом площадь канала отвода загрязнителя Fотв с площадью диаметрального сечения корпуса находится в соотношении Fотв/Fкор = 0,3-0,5. Такие соотношения канала отвода загрязнителя позволяют удалять отсепарированную пыль /твердые частицы/ за пределы очистителя с меньшими гидравлическими потерями.
Таким образом, геометрические размеры заявляемого очистителя взаимосвязаны.
В предлагаемой конструкции очистителя каналы трубы очищенного воздуха ориентированы в противоположную сторону движения потока газа в кольцевом канале, образованном корпусом и трубой очищенного воздуха.
Выполнение каналов с предложенным соотношением площадей позволяет ликвидировать вынос крупных частиц в выпускную трубу, улучшить его эффективность очистки.
Экспериментально проверено, что независимо от конструкции выпускной трубы /цилиндрической, составной цилиндрической, конической /конусность β = 2-8o/ на эффективность очистки решающее влияние оказывает соотношение площадей проходных сечений на входе в закручивающий аппарат и в устройство очищенного воздуха Fтр/Fкан = 2,5-3,5. Форма же трубы в основном влияет на гидравлическое сопротивление очистителя. Меньшее значение гидравлических потерь имеет очиститель с конической выпускной трубой с углом конусности β = 2-8o.
Проходные сечения закручивающего аппарата заявляемого инерционного очистителя допускается выполнять в виде профилированных лопаток, однако суммарная площадь каналов закручивающего аппарата /Fкан/ и площадь диаметрального сечения корпуса /Fкор/ должны отвечать соотношению Fкан/Fкор = 0,4-0,8.
На фиг. 1 и 2 изображена конструкция предлагаемого очистителя газа с сечением корпуса для лучшего показа его элементов; на фиг. 3 и 4 - горизонтальное сечение очистителя для показа геометрии проточной части каналов закручивающего аппарата и устройства очищенного воздуха.
Конструкция очистителя представляет собой узел, состоящий из корпуса 1, в верхней части которого расположен входной закручивающий аппарат 2, снабженный каналами, образованными лопатками 3, сужающимися от входа к выходу, ширина каналов b и высота h. Внутри корпуса расположено устройство очищенного воздуха 4, снабженное каналами 5, расширяющимися от входа к выходу. Отсепарированная пыль за пределы очистителя удаляется через отвод 6. Отвод 6 допускается выполнять в виде тангенциального патрубка или осевого канала, образованного корпусом и трубой очищенного воздуха.
Под действием разрежения, создаваемого, например, компрессором газотурбинного двигателя и отсасывающим устройством, например вентилятором, запыленный воздух проходит входной аппарат, скорость потока воздуха увеличивается постепенно от входа к выходу, поток получает закрутку и под действием центробежных сил твердые частицы отбрасываются к корпусу 1 и за счет вращательного и поступательного движения потока стекают к отводу 6 и удаляются отсасывающим устройством за пределы очистителя.
Очищенный воздух в кольцевом пространстве, образованном корпусом 1 и трубой очищенного воздуха 4, разворачивается и поступает в каналы 5, в которых скорость потока уменьшается от входа в каналы к выходу и далее очищенный воздух поступает в компрессор двигателя.
Предлагаемая конструкция инерционного очистителя в зависимости от расхода воздуха и допустимого гидравлического сопротивления может использоваться как единично, так и при объединении их в батарею.
название | год | авторы | номер документа |
---|---|---|---|
КОМБИНИРОВАННЫЙ ОЧИСТИТЕЛЬ ГАЗА | 1996 |
|
RU2116843C1 |
ИНЕРЦИОННЫЙ ОЧИСТИТЕЛЬ ГАЗА | 2003 |
|
RU2226121C1 |
ИНЕРЦИОННЫЙ ВОЗДУХООЧИСТИТЕЛЬ | 1980 |
|
SU1840415A1 |
ПЫЛЕЗАЩИТНОЕ УСТРОЙСТВО ДВИГАТЕЛЯ ЛЕТАТЕЛЬНОГО АППАРАТА | 1999 |
|
RU2181439C2 |
ОХЛАЖДАЕМАЯ ЛОПАТКА ТУРБОМАШИНЫ | 1996 |
|
RU2117768C1 |
СЕПАРАТОР | 1992 |
|
RU2077395C1 |
УСТРОЙСТВО ДЛЯ ОЧИСТКИ ОТРАБОТАННОГО ВОЗДУХА К ФЕРМЕНТАТОРАМ | 1993 |
|
RU2060794C1 |
СКРУББЕР ДЛЯ ОЧИСТКИ ГАЗОВ | 1996 |
|
RU2124927C1 |
УСТРОЙСТВО ДЛЯ ОЧИСТКИ ВОЗДУХА ОТ ПЫЛИ | 1993 |
|
RU2079794C1 |
РОТОРНЫЙ ВЫСОКОСКОРОСТНОЙ ГАЗОЖИДКОСТНЫЙ ВЫСОКОТЕМПЕРАТУРНЫЙ КОНТАКТНО-ПОВЕРХНОСТНЫЙ ТЕПЛООБМЕННИК | 1998 |
|
RU2141087C1 |
Использование: для очистки газа. Очиститель содержит цилиндрический корпус, закручивающий аппарат, устройство очищенного газа и отвод загрязнителя. Закручивающий аппарат выполнен в виде тангенциальных щелевых каналов при суммарной площади каналов Fкан и диаметральном сечении корпуса Fкор, удовлетворяющих соотношению Fкан/Fкор = 0,4 - 1,5, а устройство очищенного газа выполнено в виде трубы с отверстиями, суммарная площадь которых Fтр по отношению к площади щелевых каналов закручивающего аппарата Fкан находится в пределах Fтр/Fкан = 2,5 - 3,5. Заявлены и другие соотношения. В очистителе обеспечивается минимальное гидравлическое сопротивление при высокой степени очистки. 7 з.п. ф-лы, 4 ил.
Fвх/Fвых = 1,2 - 2,0,
где Fвх - суммарная площадь сечений каналов закручивающего аппарата на входе;
Fвых - суммарная площадь сечений каналов закручивающего аппарата на выходе.
Fвх/Fвых = 0,1 - 0,4,
где Fвх - площадь сечений отверстий устройства очищенного газа на входе;
Fвых - площадь сечений отверстий устройства очищенного газа на выходе.
Fотв/Fкор = 0,3 - 0,5,
где Fотв - площадь кольцевого сечения отвода загрязнителя;
Fкор - площадь диаметрального сечения корпуса очистителя.
US, патент, 3019856, 55-442, 1962. |
Авторы
Даты
1998-07-27—Публикация
1996-02-13—Подача