СПОСОБ ПОЛУЧЕНИЯ ВОДЫ Российский патент 1998 года по МПК C01B5/00 

Описание патента на изобретение RU2119445C1

Изобретение относится к электротехнике и неорганической химии и может быть использовано для получения воды из газообразных веществ посредством синтеза, преимущественно при промышленном производстве воды в районах с ограниченными водными ресурсами.

Известен способ получения воды с использованием электрохимического генератора, включающий подачу газообразных водорода и кислорода в ячейки генератора, подключение генератора к электрической нагрузке, выделение воды в одной группе ячеек с последующей фильтрацией (Лидоренко Н.С., Мучник Г.Ф. Электрохимические генераторы.- М.: Энергоиздат, 1982, с.8 - 10),
Недостатком известного способа является высокая стоимость получаемого продукта - чистой воды, поскольку для ее приготовления приходится использовать особо чистые газообразные водород и кислород, изготовление которых сопряжено с весьма высокими затратами. Кроме того, для повышения эффективности синтеза в электрохимическом генераторе приходится использовать дорогостоящие катализаторы, например платину.

Известен способ получения воды посредством смешивания газообразных водорода и кислорода и последующего синтеза компонентов смеси (Некрасов Б.В. Основы общей химии.- М.: Химия, 1965, т. 1, с. 118). В известном способе водородно-кислородную смесь подвергают каталитическому воздействию при повышенных температурах, при этом в качестве катализатора используют платину.

Недостатком известного способа является высокая стоимость получаемой воды, т. к. изготовление компонентов газообразной смеси сопряжено с высокими затратами. Кроме того, известный способ является взрывоопасным.

Наиболее близким по технической сущности к заявленному является способ получения воды путем смешивания газообразных веществ, содержащих водород и кислород и последующего синтеза воды из компонентов смеси (международная заявка PCT (WO) N 94/07795, кл. C 01 B 5/00, опубл. 1994). В известном способе синтез газообразных компонентов, в качестве которых используются водород и кислород, проводят в трубчатом реакторе, изготовленном из каталитически активного материала при воздействии высоких температур. Кроме того, в качестве одного из компонентов газообразной смеси используется нейтральный газ, например аргон, что позволяет снизить взрывоопасность известного способа.

Недостатками известного способа являются низкая производительность процесса получения воды и высокая стоимость получаемого продукта, вследствие того, что изготовление исходных компонентов газообразной смеси сопряжено с проведением ряда сложных дорогостоящих операций. Поэтому известный способ не может найти широкого промышленного применения, например в районах с ограниченными водными ресурсами.

Технический результат настоящего изобретения заключается в снижении стоимости и повышении производительности способа получения воды посредством синтеза газообразных веществ.

Для достижения указанного технического результата в способе получения воды путем смешивания газообразных веществ, содержащих водород и кислород и последующего синтеза воды из компонентов смеси, синтез проводят при плазменном состоянии газообразных веществ, причем в качестве компонентов смеси используют метан и диоксид углерода; при этом смешивают метан и диоксид углерода при избыточном объемном содержании метана или при равенстве объемов или избыточном объемном содержании диоксида углерода.

Предлагаемый способ синтеза воды из смеси компонентов газообразных веществ основан на закономерностях окислительно-восстановительных реакций, использующих характерные и уникальные особенности углерода - его возможность проявлять максимальную отрицательную (-4) и максимальную положительную (+4) окислительность. Так, максимальную отрицательную окислительность углерод проявляет только в метане CH4, а максимальную положительную активность - только в диоксиде углерода CO2. Однако при смешивании метана и диоксида углерода в обычных условиях взаимодействия между ними не происходит. Проведенные эксперименты позволили установить, что если смесь газообразных метана и диоксида углерода подвергнуть полной ионизации, т.е. образовать плазму, то метан и диоксид углерода вступают во взаимодействие, характерными продуктами которого являются вода, углеводороды предельные и непредельные и углерод. При этом метан в состоянии плазмы проявляет восстановительные свойства, а диоксид углерода - отрицательные и поэтому, находясь в плазменном состоянии и стремясь к энергетическому равновесию, они вступают во взаимосвязь. Вследствие того что максимальную электроотрицательность в данной плазменной системе имеет кислород, то к его электронному облаку смещаются атомы водорода, и так как относительная разность значений электроотрицательностей между ними максимальна, то образуется вода как энергетически устойчивое вещество. Второй энергетической ступенью рассматриваемого взаимодействия с образованием устойчивых веществ, учитывая плазменный характер взаимодействия, является образование в качестве побочных продуктов углеводородов предельных и непредельных, для чего соединение метана и диоксида углерода осуществляют при избытке объемного (молярного) содержания метана, а получение в качестве побочного продукта углерода осуществляют при равенстве их объемов или при избытке объемного содержания диоксида углерода. Реакции, имеющие место при осуществлении заявленного способа, могут быть представлены следующими уравнениями:
1) реакции, проходящие при условии (V - объем газа):

2) выход продуктов - вода и предельные (парафиновые) углеводороды:

где n - количественный показатель, равный 0, 1, 2, 3;
выход продуктов - вода и непредельные (нафтиновые) углеводороды;
3) реакции, проходящие при условии

где n - количественный показатель, равный 1, 2, 3;
выход продуктов - вода и углерод.

На чертеже приведена схема устройства, которое может быть использовано при осуществлении предлагаемого способа.

Устройство содержит плазмотрон 1, реактор плазмохимический 2, камеру закалочную 3, выход которой соединен с резервуаром утилизирующим 4, холодильник 5, подключенный к камере абсорбционной 6, накопители 7, 8, в которые поступают продукты синтеза, дроссель регулирующий 9, редуктор баллонный 10, баллоны 11, 12 с исходными газообразными веществами, редуктор баллонный 13, дроссель регулирующий 14, камеру смешивания 15, компрессоры 16, 17, резервуар газовый 18 и манометр 19, при этом выход резервуара утилизирующего 4 дополнительно соединен с камерой закалочной 3, а один из выходов камеры абсорбционной 6 через резервуар газовый 18 и компрессор 17 присоединен к камере смешивания 15.

Предлагаемый способ осуществляют следующим образом. Из баллонов 11, 12 исходные газообразные реагенты - диоксид углерода (CO2) и метан (CH4) пропускают через регулирующую аппаратуру-редукторы 10, 13 и дроссели 9, 14 и подают в камеру смешивания 15, в которой образуется смесь указанных газообразных компонентов. Затем с помощью компрессора 16 полученную газообразную смесь подают в плазмотрон 1 струйного плазмохимического реактора 2 под давлением 105 - 106 Па, при этом ведут контроль рабочего давления с помощью манометра 19. В плазмотроне 1 смесь ионизируется, т.е. обретает плазменное состояние и поступает в реакционный объем плазмохимического реактора 2, где с помощью камеры закалочной 3 происходит химическое взаимодействие диоксида углерода и метана. Происходящие при этом реакции могут быть представлены следующими уравнениями:
1) при избытке метана и n = 0 реагирование компонентов происходит в соответствии с уравнением (1), т.е.


выход продуктов - вода и насыщенные углеводороды;
2) при избытке метана и n = 1 реагирование компонентов происходит в соответствии с уравнением (2), т.е.


выход продуктов - вода и ненасыщенные углеводороды;
3) при равных объемах метана и диоксида углерода или при избытке объемного содержания диоксида углерода реагирование компонентов происходит в соответствии с уравнением (3), например, при равных объемах:

выход продуктов - вода и углерод.

Дозирование реагентов CH4 и CO2, при котором устанавливается избыток метана или диоксида углерода в процессе синтеза, обеспечивают при помощи дросселей с регуляторами давления 9,14. Из камеры закалочной 3 полученную продуктивную смесь подают в резервуар утилизирующий 4, где ее охлаждают до температуры 200-300oC, и затем основную часть продуктивной смеси подают в холодильник 5, а остаток - возвращают в камеру закалочную 3 для поддержания закалочных процессов на уровне, обеспечивающем наиболее благоприятные условия синтеза. После охлаждения из холодильника 5 продуктивную смесь направляют в камеру абсорбционную 6, где происходит фазовое разделение продуктов синтеза. Воду и углеводороды предельные и непредельные подают в накопители 7, 8, а углерод, накапливающийся в абсорбционной камере 6 периодически извлекают из нее. Непрореагировавшую часть газовой смеси метана и диоксида углерода направляют в резервуар газовый 18, из которого с помощью компрессора 17 ее возвращают в камеру смешивания 15 на повторной замкнутый плазмохимический цикл.

С использованием опытного образца рассмотренного устройства были проведены эксперименты по синтезу воды из газообразных метана и диоксида углерода в соответствии с заявленным способом. Результаты опытов представлены в таблице.

Предложенный способ получения воды посредством синтеза газообразных веществ, в качестве которых используют метан и диоксид углерода, обеспечивает снижение стоимости вследствие доступности и дешевизны исходных компонентов и высокой производительности операций способа. Использование предложенного высокоэффективного способа обеспечивает возможность синтезирования воды в промышленных условиях, что особенно важно для районов с ограниченными водными ресурсами. Кроме того, предложенный способ позволяет получать углеводороды предельные и непредельные и углерод с минимальными энергетическими затратами, поскольку они производятся в качестве побочных продуктов в процессе получения воды.

Похожие патенты RU2119445C1

название год авторы номер документа
СПОСОБ ПРЕДОТВРАЩЕНИЯ ЗЕМЛЕТРЯСЕНИЯ 1997
  • Луцюк Виктор Константинович[Ua]
  • Никитин Альберт Николаевич[Ru]
RU2107933C1
СПОСОБ ПЕРЕРАБОТКИ НЕФТИ И/ИЛИ НЕФТЯНЫХ ОСТАТКОВ 2012
  • Артемов Арсений Валерьевич
  • Крутяков Юрий Андреевич
  • Кулыгин Владимир Михайлович
  • Переславцев Александр Васильевич
  • Кудринский Алексей Александрович
  • Тресвятский Сергей Сергеевич
  • Вощинин Сергей Александрович
RU2503709C1
СПОСОБ ПЕРЕРАБОТКИ ОРГАНИЧЕСКОГО СЫРЬЯ (ВАРИАНТЫ) 2011
  • Мысов Владислав Михайлович
  • Лукашов Владимир Петрович
  • Фомин Владимир Викторович
  • Ионе Казимира Гавриловна
  • Ващенко Сергей Петрович
  • Соломичев Максим Николаевич
RU2458966C1
СПОСОБ ПОЛУЧЕНИЯ СИНТЕЗ-ГАЗА И ПРОДУКТОВ ОРГАНИЧЕСКОГО СИНТЕЗА ИЗ ДИОКСИДА УГЛЕРОДА И ВОДЫ 2008
  • Серебряков Владимир Николаевич
RU2396204C2
СПОСОБ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ ГАЗООБРАЗНОГО УГЛЕРОДСОДЕРЖАЩЕГО СЫРЬЯ (ВАРИАНТЫ) 2011
  • Мысов Владислав Михайлович
  • Лукашов Владимир Петрович
  • Фомин Владимир Викторович
  • Ионе Казимира Гавриловна
  • Ващенко Сергей Петрович
  • Соломичев Максим Николаевич
RU2473663C2
ПЛАЗМОХИМИЧЕСКИЙ СПОСОБ ПЕРЕРАБОТКИ ТВЕРДЫХ БЫТОВЫХ И ПРОМЫШЛЕННЫХ ОТХОДОВ 2011
  • Емельянов Сергей Геннадьевич
  • Звягинцев Геннадий Леонидович
  • Кобелев Николай Сергеевич
  • Назарова Дарья Геннадиевна
  • Назаров Александр Николаевич
  • Ларичкина Дарья Олеговна
RU2478169C1
СПОСОБ ПЛАЗМЕННО-КАТАЛИТИЧЕСКОЙ ПЕРЕРАБОТКИ ТВЕРДЫХ БЫТОВЫХ ОТХОДОВ 2012
  • Артемов Арсений Валерьевич
  • Крутяков Юрий Андреевич
  • Кулыгин Владимир Михайлович
  • Переславцев Александр Васильевич
  • Кудринский Алексей Александрович
  • Тресвятский Сергей Сергеевич
  • Вощинин Сергей Александрович
RU2504443C1
СПОСОБ ПОЛУЧЕНИЯ ВОДОРОДА ПАРО-УГЛЕКИСЛОТНОЙ КОНВЕРСИЕЙ ПРИРОДНОГО ГАЗА 2008
  • Плаченов Борис Тихонович
  • Прохоров Николай Сергеевич
  • Лебедев Виктор Николаевич
  • Киселев Алексей Петрович
RU2379230C2
Способ получения водорода из углеводородного сырья 2016
  • Загашвили Юрий Владимирович
  • Ефремов Василий Николаевич
  • Кузьмин Алексей Михайлович
  • Левихин Артем Алексеевич
  • Голосман Евгений Зиновьевич
RU2643542C1
СПОСОБ ПЕРЕРАБОТКИ УГЛЕВОДОРОДНОГО СЫРЬЯ 2001
  • Плаченов Б.Т.
  • Лебедев В.Н.
  • Филимонов Ю.Н.
  • Пинчук В.А.
  • Барунин А.А.
  • Кехва Т.Э.
  • Красник В.В.
  • Шевчук В.Т.
  • Ахапкин К.Н.
RU2188846C1

Иллюстрации к изобретению RU 2 119 445 C1

Реферат патента 1998 года СПОСОБ ПОЛУЧЕНИЯ ВОДЫ

Способ предназначен для получения воды. Воду получают путем смешивания метана и диоксида углерода и последующего синтеза воды из компонентов смеси. Синтез проводят при плазменном состоянии газообразных веществ. Способ позволяет повысить производительность. 2 з.п.ф-лы, 1 табл., 1 ил.

Формула изобретения RU 2 119 445 C1

1. Способ получения воды путем смешивания газообразных веществ, содержащих водород и кислород, и последующего синтеза воды из компонентов смеси, отличающийся тем, что проводят синтез при плазменном состоянии газообразных веществ, при этом в качестве компонентов смеси используют метан и диоксид углерода. 2. Способ по п.1, отличающийся тем, что смешивают метан и диоксид углерода при избыточном объемном содержании метана. 3. Способ по п.1, отличающийся тем, что смешивают метан и диоксид углерода при равенстве их объемов или при избыточном объемном содержании диоксида углерода.

Документы, цитированные в отчете о поиске Патент 1998 года RU2119445C1

Лидоренко М.С., Мучник Г.Ф
Электрохимические генераторы, - М.: Энергоиздат, 1982, с
Топка с несколькими решетками для твердого топлива 1918
  • Арбатский И.В.
SU8A1
Некрасов Б.В
Основы общей химии
- М.: Химия, 1965, т
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
WO, международная заявка, 9407795, кл
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1

RU 2 119 445 C1

Авторы

Луцюк Виктор Константинович

Лидоренко Николай Степанович

Никитин Альберт Николаевич

Даты

1998-09-27Публикация

1997-06-27Подача