Изобретение относится к горной промышленности и может быть использовано при эксплуатации скважин.
Известны различные способы реагентной разглинизации скважин, включающие формирование в зоне перфорации ванны кислот для повышения проницаемости призабойной зоны пласта не только за счет реакции кислот с карбонатами, но и за счет растворения глинистых минералов [1].
Однако практические испытания показывают низкую эффективность воздействия кислотами на глиносодержащие коллектора и коллектора, кольматированные глинистыми минералами в процессе бурения, вскрытия, ремонтных работ, что связано со спецификой взаимодействия глинистых минералов с кислотами. Основным принципиальным недостатком этих методов является отсутствие диспергирования глинистых минералов и, как следствие, низкая растворяющая способность глинистых минералов кислотами. Кроме того, при воздействии кислотами не предотвращается эффект набухания глин при взаимодействии их с пресными водами. Эти ограничения определяют низкую эффективность кислотных методов воздействия на коллектора, содержащие глинистые минералы.
Наиболее близким является способ реагентной разглинизации скважин, включающий формирование в зоне перфорации первой ванны водного раствора кислой соли щелочного металла, ее выдержку, удаление, последующее формирование в той же зоне второй ванны водного раствора соляной кислоты, ее выдержку, удаление второй ванны и последующее освоение скважины [2].
При формировании второй ванны в раствор дополнительно вводят плавиковую кислоту. В этом способе организуют двухстадийный процесс разрушения глинистых кольматирующих образований, за счет чего повышают фильтрационную проводимость призабойной зоны скважины. К достоинствам этого способа следует отнести то, что он позволяет при относительно небольшом расходе реагентов перевести глинистые минералы, кольматирующие продуктивные пласты и в итоге снижающие приток нефти к скважине, в тонкодисперсное состояние и тем самым сделать реальным их растворение, а также удаление продуктов реакции из фильтровой зоны пласта. В конечном итоге это приводит к существенному увеличению дебита скважин по сравнению со способами, включающими закачку кислот.
Однако основным ограничением этого способа является то, что очистка от глинистых материалов осуществляется только непосредственно в зоне перфорации. В призабойной части пласта глинистые минералы остаются и при попадании в эти зоны пресной воды, например при проведении ремонтных работ и закачке в пласт воды с целью поддержания пластового давления, глинистые минералы могут набухать, т. е. увеличивать свой объем и перекрывать фильтрационные каналы, снижая тем самым дебит или приемистость скважины. Кроме того, при осуществлении этого способа на практике в промежутке между установкой первой ванны и второй ванны требуется промывка скважины водой, что увеличивает расход воды и для чего требуется дополнительное время.
Таким образом, известный способ имеет невысокую эффективность восстановления первоначальной гидропроводности призабойной зоны, что особенно важно для нагнетательных скважин.
Задача, решаемая изобретением, - повышение эффективности разглинизации скважин и увеличение их дебита.
Технический результат, который может быть получен при осуществлении заявленного способа, - увеличение гидропроводности пласта.
Для решения поставленной задачи в известном способе реагентной разглинизации скважин, включающем формирование в зоне первой ванны водного раствора кислой соли щелочного металла, ее выдержку, удаление, последующее формирование в той же зоне второй ванны водного раствора соляной кислоты, ее выдержку, удаление второй ванны и последующее освоение скважины, согласно изобретению в водный раствор соляной кислоты добавляют хлористый калий в концентрации 0,2 - 2 мас.%, удаление первой ванны осуществляют ее вытеснением и замещением первоначальным объемом водного раствора соляной кислоты с хлористым калием в указанной концентрации в процессе второй ванны, при этом упомянутый первоначальный объем водного раствора соляной кислоты с хлористым калием в указанной концентрации после выдержки вытесняют из зоны перфорации вверх закачкой продавочной жидкости, в качестве которой используют упомянутый водный раствор соляной кислоты с хлористым калием в указанной концентрации, продавливают его через зону перфорации в призабойную зону пласта и выдерживают, а удаление второй ванны осуществляют промывкой.
Возможны дополнительные варианты осуществления способа, в которых целесообразно, чтобы в водный раствор соляной кислоты с хлористым калием в концентрации 0,2-2 мас.% вводят плавиковую кислоту с концентрацией 2-5 мас.%; в качестве водного раствора кислой соли щелочного металла использовали раствор бикарбоната натрия с концентрацией 5 - 15 мас.%, а выдержку первой ванны осуществляли в течение 8 - 10 ч; вторую ванну водного раствора соляной кислоты с хлористым калием в концентрации 0,2-2 мас.% формировали на 0,5-1 ч, при этом использовали бы соляную кислоту в концентрации 6 - 10 мас.%; формирование первой и второй ванны производили закачкой растворов по колонне насосно-компрессорных труб (НТК), опущенной до нижних отверстий зоны перфорации, при этом общий объем Q водного раствора соляной кислоты с хлористым калием в концентрации 2-5 мас.% выбирали бы из соотношения
Q = (8÷13,5)πh(R2-r2)+(1,5÷2)πhmR
где
h - высота фильтра, м;
R - внутренний радиус обсадной колонны, м;
r - наружный радиус насосно-компрессорных труб, м;
m - коэффициент эффективной пористости;
Rп - радиус примыкающей к скважине зоны пласта, м,
первоначальный объем Q1 водного раствора соляной кислоты с хлористым калием в концентрации 0,2-2 мас.% выбрали из соотношения
Q1 = (5÷10)πh(R2-r2),
объем Q2 продавочной жидкости, в качестве которой используется водный раствор соляной кислоты с хлористым калием в концентрации 0,2-2 мас.%, выбирали из соотношения
Q2 = (3÷3,5)πh(R2-r2),
объем Q3 для заполнения порогового пространства призабойной зоны пласта водным раствором соляной кислоты с хлористым калием в концентрации 0,2-2 мас.% выбирали из соотношения
Q3 = (1,5÷2)πhmR
За счет введения в раствор кислоты хлористого калия и выполнения этим раствором описанных выше операций удается сохранить гидропроводность призабойной зоны пласта.
Указанный преимущества, а также особенности настоящего изобретения поясняются лучшим вариантом его выполнения с приведением конкретного примера осуществления способа и со ссылками на фиг. 1 и 2.
На фиг. 1 показана зависимость степени замещения раствора кислот с хлористым калием ϕ от объема прокаченной жидкости Q; на фиг. 2 - зависимость степени восстановления гидропроводности призабойной зоны пласта χ от объема прокаченной жидкости Q.
Сущность предложенного технического решения заключается в обработке глинистых частиц первоначально, как и в известном решении, водным раствором щелочных металлов, что на первой стадии процесса приводит к диспергированию глинистых материалов в результате ионнообменных реакций и к последующей обработке глинистых частиц, находящихся во внутрипоровом пространстве призабойной части пласта водным раствором указанных кислот с хлористым калием. Взаимодействие предложенного раствора кислот с хлористым калием приводит к проникновению ионов калия в межплоскостное расстояние между чешуйками глинистых частиц, вследствие чего происходит их проточное удерживание друг около друга. При последующем проникновении в пласт воды с низкой минерализацией, которой обычно является нагнетаемая в пласт вода, ионнообменные реакции практически не происходят, глина не разбухает и, таким образом, сохраняется гидропроводность пластов.
Как показали исследования, по сравнению с известным способом при содержании хлористого калия в растворе кислот более 0,2% пресная вода не ухудшает гидропроводность коллектора. Повышение концентрации упомянутой соли выше 2% приводит к появлению в растворе твердого осадка, что может вызвать закупорку поровых каналов, и, следовательно, привести к снижению дебита или приемистости скважины.
На практике в известном способе необходимо было до установки второй ванны раствора кислот производить промывку призабойной зоны водой с целью удаления глинистых минералов и продуктов реакции. В предложенном способе удаление из призабойной зоны водного раствора кислой соли щелочного металла с продуктами ионообменной реакции позволяет удалять продукты реакции вытеснения и тем самым исключить дополнительную операцию промывки.
Как и в известном способе, для растворения алюмосиликатов во вторую ванну можно вводить плавиковую кислоту в концентрации 2-5 мас.%.
В качестве водного раствора кислой соли щелочного металла можно использовать раствор соды NaHCO3 с концентрацией 5-15%, а выдержку осуществлять в течение 8-10 ч.
Закачку водного раствора кислой соли щелочного металла и формирование первой и второй ванны, как и в известном способе, производят при помощи колонны насосно-компрессорных труб (НКТ), опущенной до нижних отверстий зоны перфорации. При этом требуемый объем Q водного раствора кислот с хлористым калием может быть получен из следующих соображений.
Количество раствора кислоты с хлористым калием должно быть таким, чтобы ее объемного количества Q хватило
а) на формирование второй ванны с целью растворения глинистых материалов, перешедших в тонкодисперсную фазу в результате обработки раствором кислой соли щелочного металла
Q1 = (5÷10)πh(R2-r2),
где
h - высота фильтра, м;
R - внутренний радиус обсадной колонны, м;
r - наружный радиус насосно-компрессорных труб, м;
Учитывая погрешности в измерении объемов при проведении ремонтных работ на скважинах для предотвращения возможных ошибок, на практике принимается 5 - 10-кратный запас раствора кислот при толщине вскрытых продуктивных пластов от 5 до 15 м. Для более тонких пластов этот запас может быть выбран и 30 - 50-кратным с тем, чтобы заведомо расположить ванну против продуктивных пластов.
б) для удаления из зоны перфорации раствора, содержащего продукты реакции кислот с глинистыми компонентами (операция удаления раствора вытеснением)
Q2 = (3÷3,5)πh(R2-r2),
что получено опытным путем в результате исследования модели скважины.
Как видно из фиг. 1, для этой цели вполне достаточно 3 - 3,5 объема межтрубного пространства в зоне перфорации скважины.
в) для заполнения порового пространства призабойной зоны скважины с целью закрепления глин и, следовательно, предотвращения их разбухания при взаимодействии с водой, имеющей низкую концентрацию солей
Q3 = (1,5÷2)πhmR
где
m - коэффициент эффективной пористости;
Rп - радиус примыкающей к скважине зоны пласта, м;
Объем прокаченной жидкости для эффективной степени восстановления гидропроводности призабойной зоны пласта χ, , как следует из фиг. 2, должен составлять 1,5 - 2 объема пор.
Обычно коэффициент эффективной пористости принимается в среднем равным 0,2, а радиус Rп - равным 0,5.
Как видно из фиг. 1 и 2, обе зависимости при определенных, указанных значениях аргумента Q становятся практически постоянными.
Таким образом, общий требуемый объем раствора кислот с хлористым калием соответствует (Q = Q1 + Q2 + Q3)
Q = (8÷13,5)πh(R2-r2)+(1,5÷2)πhmR
Установка ванны из раствора кислот с хлористым калием на 0,5 - 1 ч выбирается из уровня, что за этот период реакции кислоты с тонкодисперсными частицами глинистых материалов протекает полностью, а увеличение времени ванны может привести к дополнительной неоправданной коррозии труб.
Перед удалением второй ванны осуществляют закачку в скважину через колонну насосно-компрессорных труд (НКТ) при открытом межтрубном пространстве продавочной жидкости в объеме 3 - 3,5 объема межтрубного пространства в зоне перфорации, затем закрывают межтрубное пространство и продавочной жидкостью продавливают водный раствор кислот с хлористым калием в объеме 1,5 - 2 объема порового пространства породы примыкающей к зоне перфорации, после продавливания производят выдержку в течение 0,5 - 1 ч. Закрытие межтрубного пространства после закачки в НКТ продавочной жидкости обеспечивает поступление в призабойную зону пласта раствора хлористого калия в кислоте, не содержащего продуктов реакции. Время выдержки 0,5 - 1 ч обусловлено временем, необходимым для связывания ионами калия глинистых частиц.
Пример осуществления способа.
Скважину, оборудованную колонной насосно-компрессорных труб, соединяют с оборудованием для нагнетания рабочих растворов и спуска-подъема НКТ. Колонну НКТ опускают ниже или до нижних отверстий фильтра обсадной колонны. В качестве оборудования можно использовать цементировочный агрегат, например ЦА-320, в емкости которого заливают 6% раствор соды NaHCO3, и агрегат для закачки кислот типа АзИНМАШ-30 с раствором, содержащим ингибитор коррозии, 10% HCl, 3% HF и 1% KCl. Скважину предварительно глушат и соединяют с оборудованием, установленным на ее устье.
Первым агрегатом закачивают в колонну НКТ 4 м3 раствора соды и, продавливая его водой, доводят до забоя. Установленную ванну раствора соды выдерживают в течение 10 ч.
Далее в скважину закачивают раствор 10% HCl, 3% HF и 1% KCl. Общий объем раствора рассчитывается по приведенной формуле. При обсадной колонне диаметром 146 мм, стенке 8 мм и диаметре колонны НКТ 73 мм, h = 10 м, при выборе m = 0,2 и Rп = 0,5 получим
Q = (8 - 13,5) • 3,14 • 10 • (0,0652 - 0,0312) + (1,5 - 2) • 3,14 • 10 • 0,2 • 0,52
Таким образом, величина Q находится в интервале от 3,2 м3 до 4,4 м3.
Примем Q=4 м3.
Далее закачкой промывочной жидкостью доводят раствор до кислот с хлористым калием до забоя скважины, вытесняя и замещая им раствор соли без предварительной промывки скважины, и формируют кислотную ванну в межтрубном пространстве в соответствии с выражением для Q1 в объеме 0,5 м3 сроком на 0,5 ч.
Затем при открытом межтрубном пространстве в колонну НКТ закачивают продавочную жидкость в объеме Q2, соответствующем для выбранного примера 0,3 м3. При этом происходит вытеснение первоначального объема Q1, загрязненного продуктами реакций воздействия глиносодержащих частиц с кислотой, вверх. После этого закрывают межтрубное пространство и закачивают в НКТ жидкость, продавливая тем самым кислоту с хлористым калием в призабойную зону пласта, и оставляют скважину на 0,5 - 1 ч. После этого промывают скважину и осваивают ее обычным способом.
Проведенные испытания показали, что увеличение дебита или приемистости составляет не менее чем 2 - 2,5 раза.
Наиболее успешно заявленный способ реагентной разглинизации скважин может быть использован в горной промышленности при введении в эксплуатацию заглинистых скважин.
Источники информации
1. Патент Российской Федерации N 2078203, E 21 B 43/27, опубл. 27.04.97.
2. Патент Российской Федерации N 2055983, E 21 B 43/27, опубл. 10.03.96.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ РЕАГЕНТНОЙ РАЗГЛИНИЗАЦИИ СКВАЖИН | 1998 |
|
RU2200834C2 |
СПОСОБ РЕАГЕНТНОЙ РАЗГЛИНИЗАЦИИ СКВАЖИН | 1999 |
|
RU2160831C2 |
СПОСОБ РЕАГЕНТНОЙ РАЗГЛИНИЗАЦИИ СКВАЖИНЫ | 2011 |
|
RU2484244C1 |
СПОСОБ ОБРАБОТКИ И РАЗГЛИНИЗАЦИИ ПРИЗАБОЙНОЙ ЗОНЫ ЭКСПЛУАТАЦИОННЫХ СКВАЖИН | 2000 |
|
RU2172824C1 |
СПОСОБ ВТОРИЧНОГО ВСКРЫТИЯ ПЛАСТА | 1999 |
|
RU2160827C1 |
СПОСОБ ВТОРИЧНОГО ВСКРЫТИЯ ПЛАСТА | 2001 |
|
RU2183257C1 |
СПОСОБ ТЕРМОХИМИЧЕСКОЙ ОБРАБОТКИ ПРИЗАБОЙНОЙ ЗОНЫ СКВАЖИНЫ | 1992 |
|
RU2023874C1 |
СПОСОБ ОБРАБОТКИ ПРИЗАБОЙНОЙ ЗОНЫ СКВАЖИНЫ | 1994 |
|
RU2068086C1 |
СПОСОБ ЭКСПЛУАТАЦИИ ГЛУБИННОНАСОСНОЙ УСТАНОВКИ | 1995 |
|
RU2061175C1 |
Способ обработки призабойной зоны пласта с высокопроницаемыми трещинами гидравлического разрыва пласта | 2018 |
|
RU2702175C1 |
Изобретение относится к горной промышленности и может быть использовано при эксплуатации скважин. Способ включает формирование в зоне перфорации первой ванны водного раствора кислой соли щелочного металла, ее выдержку и удаление, формирование второй ванны водного раствора соляной кислоты, выдержку и ее удаление. В водный раствор соляной кислоты добавляют хлористый калий в концентрации 0,2-2 мас.%. Удаление первой ванны осуществляют ее вытеснением и замещением первоначальным объемом водного раствора соляной кислоты с хлористым калием в процессе формирования второй ванны. Первоначальный объем водного раствора соляной кислоты с хлористым калием после выдержки вытесняют из зоны перфорации вверх закачкой продавочной жидкости. В качестве продавочной жидкости используют упомянутый водный раствор соляной кислоты с хлористым калием. Продавливают указанный раствор через зону перфорации в призабойную зону пласта и выдерживают. Удаление второй ванны осуществляют промывкой. Использование изобретения повышает эффективность разглинизации скважин и увеличивает их дебит. 7 з.п.ф-лы, 2 ил.
Q=(8-13,5)πh(R2-r2)+(1,5-2)πhmR
где h - высота фильтра, м;
R - внутренний радиус обсадной колонны, м;
r - наружный радиус насосно-компрессорных труб, м;
m - коэффициент эффективной пористости;
Rп - радиус, примыкающей к скважине зоны пласта, м.
Q1=(5-10)πh(R2-r2) .
7. Способ по п.5, отличающийся тем, что объем Q2 продавочной жидкости, в качестве которой используется водный раствор соляной кислоты с хлористым калием в концентрации 0,2 - 2 мас.%, выбирают из соотношения
Q2=(3-3,5)πh(R2-r2).
8. Способ по п.5, отличающийся тем, что объем Q3 для заполнения порового пространства призабойной зоны пласта водным раствором соляной кислоты с хлористым калием в концентрации 0,2 - 2 мас.% выбирают из соотношения
Q3= (1,5-2)πhmR
RU 2055983 C1, 10.03.96 | |||
СПОСОБ КИСЛОТНОЙ ОБРАБОТКИ ПРИЗАБОЙНОЙ ЗОНЫ ПЛАСТА | 1993 |
|
RU2078203C1 |
Способ обработки призабойной зоны скважины | 1989 |
|
SU1723315A1 |
СПОСОБ ПОВЫШЕНИЯ ПРОДУКТИВНОСТИ СКВАЖИНЫ | 1992 |
|
RU2074957C1 |
Способ обработки призабойной зо-Ны НЕОдНОРОдНОгО плАСТА | 1979 |
|
SU836340A1 |
Ермилов В.И | |||
и др | |||
Временная инструкция по кислотной обработке газоносных пластов | |||
Кинематографический аппарат | 1923 |
|
SU1970A1 |
Авторы
Даты
1998-10-20—Публикация
1997-12-11—Подача