Изобретение относится к области паротурбостроения, а его объектом является узел перепускной трубы, проходящей между цилиндрами паровой турбины и оснащенной высокоскоростным влагоотделителем.
Аналогами настоящего изобретения являются перепускные трубы с высокоскоростными влагоотделителями инерционного типа, содержащими влагоосаждающие поверхности со щелями, которые сообщены с приемной камерой [1]. Эффективность отделения жидкой фазы в таких влагоотделителях достаточно высока, а кроме того они имеют низкое гидравлическое сопротивление и малые габариты, что обуславливает их успешное распространение. Однако вместе с жидкой фазой в таких влагоотделителях удаляется и часть пара. В известных решениях предлагается использовать отбираемую пароводяную смесь в системе регенеративного подогрева питательной воды или в подогревателях сетевой воды [1]. Однако существует ряд турбоустановок, в которых отсутствует или слабо развита система регенерации. Кроме того, в теплофикационных турбинах при работе в конденсационном режиме подогреватели сетевой воды могут быть отключены. В этом случае нет иной возможности, как отвести пароводяную смесь в конденсатор. При этом отбираемый из перепускной трубы пар не участвует в рабочем цикле, что в итоге ведет к недовыработке мощности и снижает экономичность турбоустановки.
Ближайшим аналогом изобретения является узел перепускной трубы с высокоскоростным влагоотделением инерционного типа, содержащим влагоосаждающие поверхности со щелями, которые сообщены с приемной камерой, содержащий в нижней части патрубок для отвода воды в дренажную магистраль, а в верхней - патрубок для отвода пара [2]. В таком узле перепускной трубы пароводяная смесь, поступающая через щели во влагоотделитель, разделяется в приемной камере на водяную и паровую фазу, которые эвакуируются раздельно, и при этом паровая фаза может быть использована в аппаратах турбоустановки. Однако и в описанном узле перепускной трубы не предусмотрено эффективное использование прошедшего во влагоотделитель пара независимо от типа турбоустановки и/или режима ее работы.
В основу настоящего изобретения поставлена задача создания такого узла перепускной трубы с высокоскоростным влагоотделителем, которая позволяла бы наиболее эффективно на всех режимах работы турбоустановки использовать пар, прошедший через влагоотделитель в приемную камеру.
Эта задача решена в узле перепускной трубы с высокоскоростным влагоотделителем инерционного типа, содержащем влагоосаждающие поверхности со щелями, которые сообщены с приемной камерой, содержащей в ее нижней части патрубок для отвода воды, а в верхней патрубок для отвода пара, который, в соответствии с сущностью настоящего изобретения, оснащен пароструйным компрессором, ко входу которого подключен патрубок отвода пара из приемной камеры влагоуловителя, сопло которого предназначено для подключения к магистрали высокопотенциального пара, а диффузор сообщен с перепускной трубой.
Благодаря такому решению пар, прошедший во влагоотделитель, отсасывается принудительно из приемной камеры с помощью пароструйного компрессора, дополнительно подогревается при смешивании с высокопотенциальным паром и возвращается в перепускную трубу. Это позволяет избежать непроизводительных потерь рабочего пара в перепускной трубе при использовании высокоскоростного влагоотделителя.
Для повышения качества подготовки пара, прошедшего через влагоотделитель в приемную камеру, и уменьшения расхода высокопотенциального пара в пароструйном компрессоре, в линии, соединяющей патрубок влагоотделителя с пароструйным компрессором, может быть установлен вспомогательный сепаратор простейшей конструкции.
Сущность настоящего изобретения поясняется следующим далее подробным описанием примера его реализации, изображенного на прилагаемом чертеже, который показывает перепускную трубу с высокоскоростным влагоотделителем в продольном разрезе.
Описываемый пример с приведенными расчетными величинами выполнен применительно к теплофикационной турбоустановке типа Т-150-7.7: паровая турбина, которая состоит из цилиндров высокого и низкого давления (не показаны на чертеже), соединенных перепускной трубой 1.
С коленом 2 этой трубы связан высокоскоростной влагоотделитель 3, содержащий ряд пустотелых направляющих лопаток 4 со щелями на вогнутой стенке для улавливания влаги из потока пара в перепускной трубе 1. Полости лопаток 4 через отверстия в стенках колена 2 сообщены с приемной камерой 5 вокруг колена, которая в нижней части снабжена патрубком 51 для подключения к дренажной магистрали 6, соединенной с конденсатором (не показан на чертеже), а в верхней части - патрубком 52 для отвода пара.
Патрубок 52 сообщен трубопроводом 7 с пароструйным компрессором 8. При этом в трубопровод 7 включен сепаратор 9, в частности, вихревого типа, камера 10 сбора влаги которого соединена с дренажной магистралью 6. В пароструйном компрессоре 8 сопло 11 подключено к магистрали высокопотенциального пара из первого отбора ЦВД (на чертеже не показан), к входному патрубку 12 присоединен трубопровод 7, а диффузор 13 сообщен трубопроводом 14 с перепускной трубой 1 за коленом 2.
Работа описанной перепускной трубы с влагоотделителем происходит следующим образом.
При прохождении потока пара по перепускной трубе 1 в колене 2 влагоотделителем 3 осуществляется сепарация влаги, которая вместе с частью пара поступает в приемную камеру 5. Из этой камеры жидкая часть фазы пароводяной смеси через патрубок 5 эвакуируется в дренажную магистраль 6. Паровая часть под действием эжектирующего эффекта проходит через трубопровод 7. В сепараторе 9 пар подвергается осушению. При этом отсепарированная вода поступает в дренажную магистраль 6, а пар поступает далее в компрессор 8. В компрессоре 8 осуществляется смешивание высокопотенциального пара с паром от влагоотделителя 3 и подогрев последнего, после чего их смешанный поток поступает по трубопроводу 14 в перепускную трубу 1.
Пароструйный компрессор 8 выполняет также функцию повышения давления в диффузоре 13 до значения, которое достаточно для обеспечения перепада давления между эжектором 8 и перепускной трубой 1, необходимого для прохождения пара в трубу 1.
В результате проведенных расчетов по турбоустановке типа Т-150-7.7 установлено следующее.
На конденсационном режиме давление пара в перепускной трубе 1 составляет Pн = 1,81 ата. В результате действия двух высокоскоростных влагоотделителей из трубы 1 (на двух перепускных трубах 1) удаляется 30,9 т/ч пароводяной смеси, при этом расход сухого насыщенного пара составляет 17,35 т/ч.
Эжектирующий пар из первого отбора ЦВД имеет параметры Pр = 23,7 ата и Tр = 347oC. Компрессор был рассчитан на степень повышения давления 1,3 с коэффициентом инжекции, равным 2,8. При этом расход эжектирующего пара на два высокоскоростных влагоотделителя составляет 6,2 т/ч.
За счет отбора 6,2 т/ч из ЦВД его мощность несколько уменьшается. Однако за счет введения в перепускную трубу сухого насыщенного пара с расходом 17,35 + 6,2 = 23,55 т/ч существенно увеличивается мощность ЦНД. В результате этого суммарная мощность паровой турбины увеличивается примерно на 300 кВт по сравнению с известными конструкциями, в которых пар в составе пароводяной смеси отводился в конденсатор.
название | год | авторы | номер документа |
---|---|---|---|
ВЫСОКОСКОРОСТНОЙ ВЛАГООТДЕЛИТЕЛЬ ДЛЯ ПАРОПРОВОДОВ ПАРОВЫХ ТУРБИН | 1993 |
|
RU2067666C1 |
ВЫСОКОСКОРОСТНОЙ СЕПАРАТОР ДЛЯ ПАРОПРОВОДОВ ПАРОВЫХ ТУРБИН | 1993 |
|
RU2071375C1 |
ТУРБОУСТАНОВКА | 1999 |
|
RU2156866C1 |
КОНЦЕВОЕ УПЛОТНЕНИЕ ЦИЛИНДРА НИЗКОГО ДАВЛЕНИЯ ПАРОВОЙ ТУРБИНЫ | 1996 |
|
RU2107824C1 |
ПАРОГАЗОВАЯ УСТАНОВКА | 1997 |
|
RU2144994C1 |
СЕКЦИЯ КАМЕРЫ СГОРАНИЯ ГАЗОТУРБИННОЙ УСТАНОВКИ | 1990 |
|
RU2023187C1 |
ПУСКОВАЯ СИСТЕМА ПАРОТУРБИННОЙ УСТАНОВКИ С ПРОМЕЖУТОЧНЫМ ПЕРЕГРЕВОМ ПАРА | 1998 |
|
RU2157455C2 |
ПОДОГРЕВАТЕЛЬНАЯ УСТАНОВКА ПАРОВОЙ ТУРБИНЫ | 1997 |
|
RU2136900C1 |
ЦИЛИНДР ВЫСОКОГО ДАВЛЕНИЯ ВЛАЖНО-ПАРОВОЙ ТУРБИНЫ | 2002 |
|
RU2215161C1 |
КЛАПАН ПАРОВОЙ ТУРБИНЫ | 1992 |
|
RU2044132C1 |
Узел предназначен для перепускной трубы, проходящей между цилиндрами паровой турбины. С перепускной трубой совмещен влагоотделитель инерционного типа, включающий влагоосаждающие поверхности со щелями, которые сообщены с приемной камерой, содержащей в нижней части патрубок для отвода воды в дренажную магистраль, а в верхней - патрубок для отвода пара. Последний сообщен со входом пароструйного компрессора, сопло которого предназначено для подключения к источнику высокопотенциального пара, а диффузор сообщен с перепускной трубой. Это позволяет устранить потери рабочего пара, проникающего через щели влагоотделителя вместе с влагой, и, возвращая его после осушения и перепускную трубу, увеличить мощность турбины. 13 з.п. ф-лы, 1 ил.
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
SU, авторское свидетельство 1686193, кл | |||
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
SU, авторское свидетельство, 1836574, кл | |||
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Авторы
Даты
1998-11-27—Публикация
1996-06-19—Подача