Изобретение относится к области атомной энергетики и касается теплоснабжения и горячего водоснабжения в первую очередь городов-мегаполисов, расположенных на больших площадях застройки.
В большинстве случаев города-мегаполисы, расположенные на больших территориях, имеют комплексы теплоснабжения, основанные на способах сжигания в ТЭЦ и котельных органического топлива: газа, мазута, угля, сланцев. Это приводит к выбросу в атмосферу большого количества окислов серы и азота, тяжелых металлов и тепличных газов, что, в свою очередь, ведет к ухудшению экологического состояния города. Для теплоснабжения таких городов используется до 80% всего органического топлива, необходимого для их энергообеспечения (электро- и теплоснабжения).
В настоящее время широко известны способы и комплексы теплоснабжения, основанные на использовании различных вариантов атомных станций теплоснабжения, например станций типа АСТ.
Известен вариант способа электротеплоснабжения от атомной станции, в которой один реакторный блок с теплообменным оборудованием первого-второго контуров расположен в подземном пространстве, а машинный зал, где вырабатывается теплоноситель для теплоснабжения, - на дневной поверхности. Из машинного зала горячая вода с температурой 75 -120oC подается по трубопроводам непосредственно к тепловым потребителям. Для обеспечения надежного теплоснабжения в состав станции включена пиковорезервная мазутная котельная, которая вступает в работу при необходимости покрытия пиковых нагрузок или при аварии на реакторном блоке. Данный вариант способа теплоснабжения является комбинированным ("атомно-мазутным") и не может обеспечить постоянное, полное и надежное теплоснабжение потребителей при аварии атомного блока (см. "Атомная теплофикация в районах Севера", И.Р. Степанов, Ленинград, "Наука", 1987, с. 33 "Атомная ТЭЦ Агеста").
Наиболее близким аналогом предлагаемых способа и комплекса является способ и комплекс теплоснабжения потребителей горячей водой от атомных станций теплоснабжения типа АСТ, в частности АСТ-30Б, принятой за прототип, описанной в статье "Реакторная установка АСТ-30Б для атомных станций малой мощности", авторы Г.М. Антоновский, Ю.К. Панов и др. (см. сборник докладов научного семинара ЯО СССР, Москва, 15 -18 октября 1991 г).
Установка АСТ-30Б включает ядерный реактор, в котором вырабатывается тепло, теплообменное оборудование первого-второго контуров, сетевой теплообменник теплоносителя второго контура и сетевой воды (горячего теплоносителя), поступающей непосредственно к потребителям тепла.
Все оборудование установки АСТ-30Б, кроме трубопроводов к потребителям тепла, заключено в защитную оболочку, установленную на дневной поверхности. В установке АСТ-30Б отсутствует резерв горячего теплоносителя, необходимый для использования в случае аварийных ситуаций на самой установке, т.е. подача горячего теплоносителя в наземные городские магистрали теплопотребления осуществляется только и непосредственно при нормальной работе установки АСТ-30Б, что заставляет иметь резервные тепловые мощности иного типа.
По такому же способу теплоснабжения работают и иные варианты станций типа АСТ (АСТ-500, АСТ-300 и др.).
Техническим результатом, достигаемым при реализации изобретения, является повышение надежности теплообеспечения потребителей при любых событиях, обеспечение накопления и оперативного перераспределения горячего теплоносителя в случае необходимости и улучшение экологической обстановки города за счет исключения выбросов в атмосферу продуктов сжигания органического топлива.
Для этого в известном способе теплоснабжения города, заключающемся в выработке горячего теплоносителя путем нагрева "холодного" теплоносителя в сетевом теплообменнике атомного энергетического модуля и подаче его в наземные городские магистрали теплопотребления, откуда "холодный" теплоноситель возвращают обратно в сетевой теплообменник, горячий теплоноситель вырабатывают в подземных сетевых теплообменниках группы в составе не менее двух автономных атомных энергетических модулей. Подачу горячего теплоносителя в городскую наземную магистраль теплопотребления осуществляют, по мере необходимости, из искусственного подземного горизонта-накопителя, в котором аккумулируют горячий теплоноситель в процессе его выработки в сетевых теплообменниках, создавая тем самым его запас. Причем искусственный геотермальный горизонт располагают выше уровня расположения атомных энергетических модулей.
В комплексе теплоснабжения города, имеющем в своем составе теплопроизводящее оборудование, включающее атомный энергетический модуль и сетевые теплообменники, соединенные гидравлически с наземными городскими магистралями теплопотребления, теплопроизводящее оборудование состоит из группы не менее двух автономных подземных атомных энергетических модулей с сетевыми теплообменниками. В состав комплекса включен искусственный подземный геотермальный горизонт-накопитель для аккумулирования горячего теплоносителя, выполненный в виде отдельных коллекторов-накопителей, которые трубопроводами через запорные устройства соединены между собой, с атомными энергетическими модулями и наземными городскими магистралями теплопотребления. При этом коллекторы-накопители расположены в подземном пространстве выше уровня размещения атомных энергетических модулей и ниже наземных городских магистралей теплопотребления.
Предлагаемые способ и комплекс теплоснабжения города обеспечивают надежность и повышенную защищенность комплекса от внешних и внутренних воздействий, а значит, и повышенную надежность теплоснабжения.
Накопление горячего теплоносителя в искусственном геотермальном горизонте позволяет иметь постоянно необходимое количество горячего теплоносителя и перераспределять его в случае необходимости между потребителями, т.к. коллектора-накопители соединены между собой.
Расположение коллекторов-накопителей в подземном пространстве выше горизонта расположения атомных энергетических модулей позволяет снизить энергозатраты на прокачку горячего теплоносителя в системах за счет наличия естественной циркуляции в комплексе из-за разницы температур теплоносителей. Подземное размещение коллекторов-накопителей позволяет также использовать в процессе эксплуатации комплекса принцип "термоса" для уменьшения теплопотерь из них в окружающее пространство после первоначального заполнения комплекса горячим теплоносителем и установления в нем стационарного состояния. Кроме того, расположение коллекторов-накопителей ниже наземных городских магистралей теплопотребления также снижает энергозатраты на прокачку горячего теплоносителя за счет образования естественной циркуляции между горячим коллектором-накопителем, наземными потребителями и коллекторами сбора "холодного" теплоносителя. Выработка горячего теплоносителя в группе атомных модулей обеспечивает надежное и устойчивое теплоснабжение города при любых ситуациях.
Отличительный от прототипа существенный признак изобретения - подачу горячего теплоносителя к наземным потребителям осуществляют из искусственного геотермального горизонта, образованного группой связанных между собой гидравлически коллекторов-накопителей, расположенных в подземном пространстве выше теплопроизводящего оборудования и ниже наземных потребителей тепла. Такие способ и комплекс теплоснабжения позволяют иметь надежную, гибкую, устойчивую и безопасную систему для городов-мегаполисов, расположенных на значительных территориях.
Предлагаемые способ и комплекс теплоснабжения одновременно обеспечивают получение и других технических результатов, заключающихся в улучшении экономических характеристик теплоснабжения и экологической обстановки города в целом.
Сущность изобретения поясняется фиг. 1 и 2, где
на фиг.1 показана принципиальная гидравлическая схема и взаимное расположение элементов комплекса, обеспечивающих способ теплоснабжения; на фиг. 2 показан вариант плана взаимного расположения автономных атомных энергетических модулей и группы коллекторов-накопителей горячего теплоносителя в пределах площади застройки города.
Комплекс теплоснабжения города (фиг. 1) состоит из автономных атомных энергетических модулей 1, расположенных в подземном пространстве на глубине "H", включает в свой состав атомный реактор 2, теплообменник 3 первого-второго контуров теплоносителей, сетевой теплообменник 4 второго контура, вырабатывающий горячий теплоноситель для теплоснабжения города. Сетевой теплообменник 4 трубопроводом 5 соединен с коллектором-накопителем горячего теплоносителя 6, который размещен в подземном пространстве на глубине "h", причем "h" меньше "H". Коллектор-накопитель 6 трубопроводом 7 через запорные устройства 8 соединен с наземными городскими магистралями теплопотребления 9, которые трубопроводом 10, через коллектор сбора 11 "холодного" теплоносителя, трубопровод 12, циркуляционный насос 13 и трубопроводы 14 соединены с сетевыми теплообменниками 4. На различных участках комплекса установлены запорные устройства 15, 16 и 17, которые обеспечивают работу комплекса при различных режимах использования горячего теплоносителя для теплоснабжения, например, объекта 18.
Способ теплоснабжения города горячим теплоносителем с использованием комплекса теплоснабжения осуществляется следующим образом. В сетевых теплообменниках 4 атомных энергетических модулей 1 вырабатывают горячий теплоноситель для теплоснабжения города, который по трубопроводам 5 подают в коллектора-накопители 6. Из коллекторов-накопителей 6 горячий теплоноситель по трубопроводам 7 подают в наземные городские магистрали теплопотребления 9, где он отдает тепло. Из систем теплопотребления 9 обратно "холодный" теплоноситель по трубопроводам 10 подают в коллектора сбора 11 "холодного" теплоносителя и далее по трубопроводам 12, через циркуляционный насос 13 и трубопроводы 14 "холодный" теплоноситель возвращается в сетевые теплообменники 4 атомных энергетических модулей 1, где он вновь нагревается, замкнув цикл циркуляции.
Запорные устройства 8, 15, 16 и 17 позволяют гибко регулировать поступление в коллектора-накопители 6 и распределение из них горячего теплоносителя в зависимости от теплопотребления на различных объектах города.
Одновременно указанная группа запорных устройств позволяет, в случае необходимости, отключить несколько или один коллектор-накопитель от общей системы теплоснабжения.
Например, отключение коллектора-накопителя 6, от которого производят теплоснабжение объекта 18, осуществляют закрытием устройств 8, 15 и 17. Объект 18 подключают к другому коллектору-накопителю (на фиг. 1 дополнительные системы не показаны).
Таким образом, введение в способ и комплекс теплоснабжения города-мегаполиса подачи горячего теплоносителя от теплопроизводящего агрегата (атомного энергетического модуля) через искусственный геотермальный горизонт - отличительного от прототипа существенного признака заявляемого изобретения - обеспечивает достижение технического результата, заключающегося в том, что достигается повышение надежности и экономичности теплообеспечения потребителей при любых событиях, осуществляется оперативное перераспределение горячего теплоносителя по потребителям в случае необходимости, достигается улучшение экологической обстановки города за счет исключения выбросов в атмосферу продуктов сжигания органических видов топлива, а также обеспечивается получение и другого технического результата, заключающегося в гарантированной полной безопасности населения города-мегаполиса при использовании ядерной энергии для целей теплообеспечения.
название | год | авторы | номер документа |
---|---|---|---|
АТОМНАЯ СТАНЦИЯ ТЕПЛОСНАБЖЕНИЯ | 1992 |
|
RU2022375C1 |
СПОСОБ РАБОТЫ СИСТЕМЫ ТЕПЛО- И ВОДОСНАБЖЕНИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1997 |
|
RU2132024C1 |
КОГЕНЕРАЦИОННЫЙ МОДУЛЬ С ДВС ЖИДКОСТНОГО ОХЛАЖДЕНИЯ ДЛЯ ТЕПЛОЭЛЕКТРОСТАНЦИЙ | 2001 |
|
RU2200242C1 |
СПОСОБ УТИЛИЗАЦИИ ТЕПЛОТЫ НЕОЧИЩЕННЫХ СТОЧНЫХ ВОД И ПОЛУЧЕНИЯ ГОРЯЧЕГО ТЕПЛОНОСИТЕЛЯ | 2007 |
|
RU2338968C1 |
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ КОЛИЧЕСТВА ТЕПЛОВОЙ ЭНЕРГИИ, ПЕРЕДАВАЕМОЙ ВОДОЙ ГОРЯЧЕГО ВОДОСНАБЖЕНИЯ | 2001 |
|
RU2189572C1 |
ГЕЛИО-ГЕОТЕРМИЧЕСКАЯ СТАНЦИЯ И СПОСОБ ЕЕ ЭКСПЛУАТАЦИИ | 2011 |
|
RU2459157C1 |
Гелиогеотермальный энергокомплекс | 2020 |
|
RU2749471C1 |
ПОДЗЕМНЫЙ ЯДЕРНО-ЭНЕРГЕТИЧЕСКИЙ КОМПЛЕКС | 2012 |
|
RU2510088C1 |
СКВАЖИННАЯ СИСТЕМА ТЕПЛОСНАБЖЕНИЯ С ПОДЗЕМНЫМ ТЕПЛОГИДРОАККУМУЛИРОВАНИЕМ | 2008 |
|
RU2371638C1 |
МОБИЛЬНЫЙ МОДУЛЬНЫЙ КОМПЛЕКС ЖИЗНЕОБЕСПЕЧЕНИЯ | 2019 |
|
RU2729926C1 |
Изобретение относится к области атомной энергетики и решает задачу теплоснабжения в первую очередь городов-мегаполисов теплофикационной водой и горячей водой для бытовых нужд. Сущность способа теплоснабжения состоит в том, что горячий теплоноситель получают в подземных сетевых теплообменниках группы атомных энергетических модулей (АЭМ). Затем горячий теплоноситель накапливают в подземном искусственном геотермальном горизонте, который расположен выше горизонта расположения АЭМ. По мере необходимости горячий теплоноситель подают по трубопроводам с запорными устройствами в наземные городские магистрали теплопотребления. Сущность комплекса теплоснабжения города состоит в том, что в его состав включено не менее двух автономных подземных теплопроизводящих АЭМ, в которых вырабатывается горячий теплоноситель. Сетевые теплообменники АЭМ соединены с искусственным геотермальным горизонтом для накопления горячего теплоносителя, который выполнен в виде отдельных коллекторов-накопителей. Коллекторы-накопители горячего теплоносителя трубопроводами с запорными устройствами соединены между собой, с АЭМ и наземными городскими магистралями теплопотребления. Такое размещение и объединение элементов комплекса позволяет оперативно осуществлять накопление и перераспределение горячего теплоносителя по потребителям города. 2 с.п. ф-лы, 2 ил.
Г.М | |||
Антоновский и др | |||
Способ обработки медных солей нафтеновых кислот | 1923 |
|
SU30A1 |
Сб | |||
докладов научного семинара ЯО СССР | |||
Прибор для нагревания перетягиваемых бандажей подвижного состава | 1917 |
|
SU15A1 |
EP, 0197464 A1, 1986 | |||
СПОСОБ ПОЛУЧЕНИЯ СУБМИКРОННЫХ И НАНОЧАСТИЦ АЛЮМИНИЯ, ИМЕЮЩИХ ПЛОТНОЕ ДИЭЛЕКТРИЧЕСКОЕ ПОКРЫТИЕ | 2008 |
|
RU2397046C2 |
Р.И | |||
Степанов | |||
Атомная теплофикация в районах Севера | |||
- Л.: Наука, 1987, с.33. |
Авторы
Даты
1999-02-10—Публикация
1997-05-06—Подача