Данное изобретение касается способа и устройства для генерации лазерного гамма-излучения. Более конкретно изобретение касается способа и устройства для одновременной генерации прямого лазерного гамма-излучения [F-GASER (Усиление гамма-лучей путем индуцированного излучения радиации)], в котором энергия фотона превышает 1 МэВ/МэВ: 1000000 эВ/, и обратного лазерного гамма-излучения (B-GA ЕР) вблизи области лазерного излучения, не превышающей 200 кэВ.
Из уровня техники известен способ генерирования лазерного, гамма-излучения (см. /1/ JP-3-225798 А, H 05 H 13/04, публикация 1991), включающий облучение мишени пучком электронов для генерации позитронов и воздействие на пучок электронов и пучок позитронов, ускоренных до одинаковых энергий.
Стандартные способы генерации луча когерентного монохроматического света ограничиваются областью видимого света, как в случае лазера и ближайшей с ней областью. Невозможно реализовать способ генерации как рентгеновского, так и когерентного монохроматического излучения достаточной интенсивности, т.е. когерентных монохроматических гамма-лучей более высокой энергии, т.е. с энергией фотона более 1 МэВ.
Известно также устройство для генерирования лазерного гамма-излучения (см. /1/), содержащее мишень для генерации позитронов, инжектор электронов и позитронов, кольцо циркуляции позитронов и средство для ускорения пучка электронов и пучка позитронов до соответствующих заданных энергий посредством инжектора и кольца циркуляции.
В основу настоящего изобретения поставлена задача создания способа и устройства для генерации лазерного гамма-излучения, в котором луч света высокой энергии, превосходящей энергию луча синхронного излучения ( Р) в отношении его монохроматичности и низкой степени шума, генерируется на основе принципа, полностью отличающегося от принципа, используемого в известном способе для генерации когерентного монохроматического излучения, т.е. путем создания пучка электронов и пучка позитронов, ускоренных до одинаковых энергий и сходящихся в один поток в одном и том же направлении, и образования на оси слияния молекул позитрония или парапозитроны в форме пучка одинаковой фазы, охлажденного до температуры переходной конденсации Бозе-Эйнштейна, посредством чего одновременно генерируется лазерное гамма-излучение с двумя длинами волн, которые сопровождают аннигиляцию, вызванную самоиндуцированным излучением.
Поставленная задача решается тем, что в способе генерирования лазерного гамма-излучения, включающем облучение мишени пучком электронов для генерации позитронов и воздействие на пучок электронов и пучок позитронов, ускоренных до одинаковых энергий, согласно изобретению осуществляют слияние пучков электронов и позитронов в одном и том же направлении и образуют на оси слияния молекулы позитрония или парапозитрония в форме пучка одной и той же фазы, охлажденного до температуры переходной конденсации Бозе-Энштейна, посредством чего одновременно генерируют лазерное гамма-излучение двух длин волн, сопровождающих аннигиляцию молекул, вызываемую самоиндуцированным излучением.
Поставленная задача решается также тем, что в устройстве для генерирования лазерного гамма-излучения, содержащем мишень для генерации позитронов, инжектор электронов и позитронов, кольцо циркуляции позитронов и средство для ускорения пучка электронов и пучка позитронов до соответствующих заданных энергий посредством инжектора и кольца циркуляции, согласно изобретению дополнительно содержится средство для направления пучка электронов и пучка позитронов в сходящийся поток в одном и том же направлении и фокусирующий элемент на участке слияния электронов и позитронов для генерации прямого лазерного гамма-излучения высокой энергии и обратного лазерного гамма-излучения низкой энергии в прямом и обратном направлениях соответственно.
В способе генерации лазерного гамма-излучения пучок позитронов накапливается по меньшей мере до заданной энергии и интенсивности.
В способе генерации лазерного гамма-излучения поляризованный или неполяризованный лазерный пучок фотонов проецируется на сходящиеся пучки электронов и позитронов для стимуляции избирательного образования молекул позитронов или охлажденных парапозитронов в форме пучка одной и той же фазы, генерируя тем самым лазерное гамма-излучение.
В способе генерации лазерного гамма-излучения, поляризованный или неполяризованный лазерный пучок фотонов направляют антипараллельно по отношению к направлению распространения сходящихся пучков электронов и позитронов.
Устройства для генерации лазерного гамма-излучения, содержащего электронную и позитронную инжекторную систему, кольцо циркулирования позитронов, фокусирующий элемент участка электронно-позитронного слияния и средство для ускорения электронного пучка и позитронного пучка до соответствующих заданных энергий инжекторной системой и при необходимости кольцом циркуляции для направления электронного пучка и позитронного пучка в сходящийся поток в одном и том же направлении фокусирующим элементом участка слияния, вследствие чего генерируется прямое лазерное гамма-излучение высокой энергии (F-GASER) и обратное лазерное гамма-излучение низкой энергии (B-GASER) в прямом и обратном направлении соответственно.
Кроме того, в устройстве для генерации гамма-лазера предусматривается приспособление для выпуска лазерного или мазерного излучения в направлении, антипараллельном по отношению к соединенным пучкам электронов и позитронов, чтобы избирательно стимулировать образование положительно заряженных молекул или охлажденных парапозитрониев в форме пучка одной и той же фазы.
Согласно изобретению, электронный пучок и позитронный пучок ускоряют до заданных энергий, эти пучки накапливают, если это необходимо, и направляют в сходящийся поток в одном и том же направлении. При облучении стимулирующим лазерным или мазерным излучением молекул позитрония или охлажденные или конденсированные парапозитронии образуются в форме пучка в одной и той же фазе. F - GASER высокой энергии (прямой GASER: прямое лазерное гамма-излучение, соответствующий по существу всей энергии электронов и позитронов) и B-GASER (обратный GASER: обратное лазерное гамма-излучение оставшейся энергии) могут генерироваться на оси сходящегося пучка посредством стимулируемой аннигиляции молекул позитрония или охлажденных парапозитрониев.
В дальнейшем изобретение поясняется конкретным вариантом его воплощения со ссылками на сопровождающий чертеж, на котором фиг. 1 изображает схему устройства, генерирующего лазерное гамма-излучение, согласно изобретению. Как показано на фиг. 1, устройство содержит источник и ускоритель 1 электронов, систему 1' торможения и сбора электронов и ускоритель 2 малого размера для генерации медленных позитронов. На практике пригоден малый циклотрон или микротрон. Кроме того, устройство содержит термоэлектрический генератор 3 позитронов, который содержит множество вольфрамовых мишеней, генерирующих позитроны при облучении электронами высокой энергии, систему 4 ускорения позитронов, инжекционный магнит 5 для инжекции пучка позитронов в циркуляционное (охлаждающее) кольцо R, соленоид 6, фокусирующий пучок для участка слияния электронов и позитронов, зеркало 7 инжекции лазерных фотонов для индуцированного образования молекул позитрония и парапозитрониев, а также соединяющий и разделяющий магниты 8, 9 соответственно. Позитроны охлаждаются электронным пучком во время прохождения участка слияния.
В случае позитронов, имеющих энергию ускорения порядка нескольких сотен КэВ, как в данном варианте, позитроны охлаждаются до температуры, одинаковой с температурой электронного пучка, т.е. импульс установлен однородным - в несколько миллисекунд времени повторного прохождения пути. Кроме того, устройство дополнительно содержит генератор 10 лазерного или мазерного луча, F-GASER 11, B-GASER 12, элемент 13 фокусировки пучка позитронов, магнит 14, отклоняющий пучок позитронов и соленоид 15.
Работа устройства, генерирующего лазерное гамма-излучение, осуществляется следующим образом.
Пучок электронов однородного импульса, излучаемый источником 1 электронов, направляют в один поток с пучком позитронов при помощи соединяющего магнита 8, и охлаждают позитроны вследствие кулоновского взаимодействия во время их прохождения через фокусирующий пучок соленоид 6. После этого электроны покидают участок слияния через разделяющий магнит 9 и собираются системой 1' торможения и собирания электронов.
Тепловые позитроны, образованные ускорителем 2, генерирующим медленные позитроны, и генератором 3 позитронов, ускоряются системой 4 ускорения позитронов до заданной энергии γm0c2, равной энергии пучка электронов источника 1 электронов и их ускорения. Эти ускоренные тепловые позитроны хранятся в циркуляционном кольце R через инжекторный магнит 5. Позитроны в циркуляционном кольце R охлаждаются электронами во время прохождения через фокусирующий пучок соленоид 6 на участке слияния. Здесь moc2 представляет собой энергию массы покоя электронов, т.е. 511 кэВ, а γ является релятивистким энергетическим коэффициентом электронов, который выражается следующей формулой;
γ ≡ (1 - β2)-1/2 (1)
β ≡ v/c (2)
где V, с представляют собой скорость электрона и скорость света соответственно.
Часть электронов и часть позитронов на участке слияния соединяются таким образом, что их соответственные спины (квантово-механическая кинетическая степень свободы, соответствующая вращению электронов) антипараллельны друг другу и тем самым образуют двухэлектронные атомы, называемые парапозитрониями. Паpaпозитроний подвергается двухфотонной аннигиляции при среднем времени жизни 1,2 х 10-10 с и преобразуется в два гамма-луча. Однако, поскольку эти гамма-лучи являются некогерентными и обладают низкой интенсивностью, практических проблем не возникает.
Кроме парапозитрониев на участке слияния также образуются ортопозитронии, в которых спины электронов и позитронов соединяются параллельно, или образуются также позитронии в возбужденном состоянии. Однако, поскольку эти орто-позитронии или позитронии в возбужденном состоянии имеют большое время жизни, они диссоциируются на электроны и позитроны индуцированными электромагнитными импульсами при их попадании на разделяющий магнит 9 вместе с сохраняющимися парапозитрониями. В результате позитроны остаются в циркуляционном кольце R и, следовательно, потерь нет. В принципе, позитроны в кольце охлаждаются пучком электронов однородного импульса на участках повторного слияния, пока они не преобразуются в гамма-лучи.
Если использовать эффект излучения тепловой энергии электронов и позитронов и энергию соединения с индуцирующим излучением для стимуляции образования парапозитрониев (см. H. Jkedami, Phys. Rev. Zett. 60, 929 (1988)), то количество образованных парапозитрониев может быть увеличено в 1000-1000000 раз. Напротив, долгоживущие ортопозитронии или позитронии в возбужденных состояниях диссоциируются ионизацией вследствие индуцирующего излучения. Поэтому в сущности индуцированное образование парапозитрониев происходит избирательно. Индуцированное образование имеет место в том случае, если частота νs и частотная ширина Δνs индуцирующего излучения, выбрасываемого антипараллельно пучку электронов, удовлетворяют нижеприведенным условиям относительно величины Δv, являющейся флуктуацией скорости Ve, обусловленной тепловым движением электронов и позитронов. Следует отметить, что в случае, когда выбрасываемое излучение не является антипараллельным, β становится -β.
(α/2)2m0c2= (1+β)γ·hνs (3)
(m0/2)(Δv)2= (1+β)γ·hΔνs (4)
где α = 1/137 является постоянной тонкой структуры, а h - постоянная Планка.
Кроме того, когда еще один тип индуцирующего излучения, при котором 0.4 эВ подставляют в левую часть уравнения (3), т.е. (α/2)2m0c2 (= 6,8 эВ) и mo представляют вместо mo/2 в уравнение (4), накладывается в совмещенном или комбинируемом состоянии, полученные позитронии соединяются по два и получают молекулу позитрония в виде сгустка высокой плотности.
Как будет понятно из уравнений (3) и (4), электроны и позитроны, тепловая энергия которых (1/2)m0v
Предполагается, что эти парапозитронии или молекулы позитрония могут действовать только определенным образом, при котором двухфотонная аннигиляция любого атома позитрония коррелирует с аннигиляцией всех других атомов. В этом случае эти фотоны испускаются в направлении пучка пapaпозитрониев и также в противоположном направлении в пределах очень малого телесного угла, пропорционального (Δνs/νs).
Принимая во внимание вышеупомянутые факты, вычисляют коэффициент Эйнштейна, и можно получить теоретическую величину увеличения вероятности аннигиляции путем самостимуляции парапозитрониев.
В случае, когда численная плотность позитронов в стандартных генераторах 1, 1' простых электронных пучков, имеющих энергию ускорения 400 кэВ и численную плотность электронов 1015m-3, и в фокусирующем пучок соленоиде для участка сходящегося пучка малого кольца R циркуляции позитронов равна количеству электронов, плотность образованных парапозитрониев превосходит численную плотность электронов, и увеличение вероятности аннигиляции плавно возрастает вследствие эффекта конденсации. В результате все парапозитронии, образованные индуцирующим излучением, генерируют лазерное гамма-излучение (GASER) одновременно двухфотонной аннигиляцией, обусловленной эффектом самостимуляции, в короткий период времени 1012 секунд. При этом молекулы позитрония имеют время жизни 1013 секунд независимо от числа образованных молекул и подвергаются самоиндуцированной аннигиляции, образуя лазерное гамма-излучение.
Время аннигиляции гораздо меньше, чем время поддержания конденсации Δt = h/m0(Δv)2 (10-10 секунд в данном варианте), определяемое принципом неопределенности Гейзенберга, и переходная конденсация Бозе-Эйнштейна парапозитрониев поддерживается в пределах времени аннигиляции. Это подтверждает тот факт, что гарантирована когерентность пучка парапозитрониев.
Одна когерентная группа фотонов, образованная двухфотонной аннигиляцией благодаря самоиндуцированной эмиссии позитрониев или пучка пapaпозитрониев однородной фазы является F-GASER испускаемым в направлении распространения позитрониев, и его энергия фотонов выражается следующим образом:
hνF-GASER= (1+β)γm0c2 (5)
Энергия фотона B-GASERa, испускаемая антипараллельно направлению распространения позитрониев, выражается следующим образом:
hνB-GASER= (1-β)γm0c2 (6)
Это монохроматическое излучение однородной фазы.
В случае энергии ускорения электронов 400 кэВ в этом варианте воплощения энергии фотонов двух типов GASER определяются следующим образом:
hνF-GASER= 1,67 МэВ,hνB-GASER= 0,15 МэВ
В обоих случаях длина волны короче, чем длина волны излучения, образованного существующими в настоящее время кольцами излучения большого масштаба.
Можно создать много различающихся вариантов без отхода от принципов данного изобретения, из чего следует, что данное изобретение не ограничивается его специфическими вариантами, изложенными в формуле изобретения.
Согласно данному изобретению, можно получить следующие результаты.
1) Монохроматическое лазерное гамма-излучение, т.е. прямой GASER, имеющий энергию фотонов свыше нескольких МэВ, и монохроматическое лазерное гамма-излучение, т. е. обратный GASER, имеющий энергию фотонов менее 200 кэВ, могут быть одновременно генерированы и с легкостью выделены. Эти GASER не известны из предшествующего уровня техники.
2) Если энергия ускорения электронов и позитронов увеличена путем введения кольца циркуляции электронного пучка, то можно также генерировать монохроматическое лазерное гамма-излучение и F-GASER в энергетической области порядка ГэВ (гига-электрон-Вольт).
3) В частности, в отношении монохроматичности, низкого шума и уменьшенного размера устройства лазерное гамма-излучение, F-GASER и B-GASER далеко превосходят лазеры, получаемые при помощи излучения и кольца излучения большого размера. Данное изобретение может внести вклад в новые исследования и усовершенствования, в которых была введена когерентность, в некоторые разделы химии, касающиеся свойств структур, в физике элементарных частиц и в областях их применения.
Изобретение относится к лазерной технике. В процессе генерирования лазерного гамма-излучения осуществляют слияние пучков электронов и позитронов в одном и том же направлении и образуют на оси слияния молекулы позитрония или парапазитрония в форме пучка одной и той же фазы, охлажденного до температуры переходной конденсации Бозе-Эйштейна. В результате этого одновременно генерируют лазерное гамма-излучение двух длин волн, сопровождающих аннигиляцию молекул, вызываемую самоиндуцированным излучением. Устройство для генерирования лазерного гамма-излучения содержит средство для направления пучка электронов и пучка позитронов в сходящийся поток в одном и том же направлении и фокусирующий элемент на участке слияния электронов и позитронов. Изобретение позволяет генерировать лазерное излучение высокой энергии, превосходящей энергию луча синхронного излучения, при высокой монохроматичности и низкой степени шума. 2 с. и 4 з.п. ф-лы, 1 ил.
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. | 1921 |
|
SU3A1 |
1969 |
|
SU436043A1 | |
Способ экстремального регулирования интенсивности гамма-излучения ускорителей элементарных частиц | 1960 |
|
SU135552A1 |
US 4598415 A, 1986 | |||
US 3557370 A, 1971 | |||
Автоматический огнетушитель | 0 |
|
SU92A1 |
Шланговое соединение | 0 |
|
SU88A1 |
Устройство для автоматического адресования объекта по кратчайшему пути | 1987 |
|
SU1456348A1 |
Авторы
Даты
1999-03-20—Публикация
1995-11-28—Подача