Изобретение относится к источникам вакуумного УФ-излучения, которые применяются в газоанализаторах, основанных на использовании УФ-излучения для ионизации молекул анализируемых веществ.
Известны УФ-лампы для фотоионизационных детекторов, содержащие герметичную колбу из твердого материала, не проницаемого для УФ-излучения, заполненную смесью инертных газов и/или водородом, электроды для формирования электрического разряда, установленные в колбе, и окно из проницаемого для УФ-излучения материала, установленное на торце колбы и герметично соединенное с ее стенками (см. , например, патент Германии N 4320607, H 01 J 47/02, 1990 г.).
Недостатком известной лампы является загрязнение ее выходного окна в течение работы. Это происходит вследствие того, что в материале окна под действием излучения с энергией порядка 10 эВ происходит образование электронно-дырочных пар, в результате разделения которых на внешней поверхности окна появляется отрицательный заряд. Этот заряд притягивает к себе положительные ионы, образующиеся под воздействием излучения, испускаемого лампой. Для восстановления характеристик лампы ее окно приходится периодически протирать, что связано с неудобствами и усложняет эксплуатацию фотоионизационных детекторов.
Задача изобретения состоит в том, чтобы уменьшить загрязнение лампы.
Указанная задача решается тем, что предложена УФ-лампа для фотоионизационного детектора, содержащая герметичную колбу из твердого материала, не проницаемого для УФ-излучения, заполненную смесью инертных газов и/или водородом, электроды для формирования электрического разряда, установленные в колбе, и окно из проницаемого для УФ-излучения материала, установленное на торце колбы и герметично соединенное с ее стенками, которая согласно изобретению снабжена электродами для формирования защитного электрического поля, выполненными в виде слоев металла, нанесенных на внутреннюю и внешнюю поверхности окна лампы, и источником постоянного напряжения, причем электрод, нанесенный на внешнюю поверхность окна, соединен с отрицательным полюсом источника напряжения, электрод, нанесенный на внутреннюю поверхность окна лампы, соединен с положительным полюсом источника напряжения.
Отличием предлагаемой лампы является также то, что часть электрода, нанесенного в виде слоя металла на внутреннюю поверхность окна, расположена с внешней стороны колбы.
В одном из возможных вариантов выполнения предлагаемой лампы электроды, нанесенные на внутреннюю и внешнюю поверхности окна, выполнены в виде слоев алюминия, толщина которых не превышает 200 ангстрем, и покрывают всю площадь поверхности окна.
В другом возможном варианте выполнения предлагаемой лампы в слоях металла электродов, нанесенных на внутреннюю и внешнюю поверхности окна, выполнены отверстия, расположенные по обе стороны окна и имеющие общую ось, перпендикулярную поверхности окна.
Технический результат изобретения состоит в том, что благодаря наличию электродов, нанесенных на внутреннюю и внешнюю поверхности окна, вблизи окна с его внешней стороны формируется электрическое поле, отталкивающее положительные ионы анализируемых веществ и тем самым препятствующее их налипанию на поверхности окна, то есть его загрязнению.
Сущность изобретения поясняется чертежами.
На фиг. 1 изображен вариант выполнения предлагаемой УФ-лампы со слоями металлических электродов, перекрывающими всю площадь поверхности окна лампы.
На фиг. 2 изображен вариант выполнения лампы со слоями металлических электродов, имеющими отверстия для пропускания УФ-излучения.
Лампа содержит герметичную колбу 1 из твердого материала, не проницаемого для УФ-излучения, с герметично соединенным с ней окном 2 для вывода излучения. Внутренний объем колбы 1 заполнен инертным газом (ксенон, криптон) или их смесью с гелием и/или водородом. Внутри колбы установлены анод 3 и катод 4, формирующие разрядный канал, ограниченный стеклянным капилляром 5, и соединенные с помощью выводов 6 и 7, герметично впаянных в колбу 1, с источником питания (не показан). На внешней и внутренней поверхностях окна 2 нанесены электроды, выполненные в виде внешнего 8 и внутреннего 9 слоев металла, например алюминия, толщину которого выбирают такой, чтобы слои 8 и 9 металла пропускали вакуумное УФ-излучение. Для алюминия толщина слоев не должна превышать 20 нм. Внутренний слой 9 представляет собой металлическую пленку, частично расположенную внутри колбы. Периферийная часть 10 слоя 9 находится с внешней стороны колбы 1 и соединена с положительным полюсом источника питания 11, а внешний слой 8 соединен с отрицательным полюсом источника питания 11 и заземлен.
При использовании для возбуждения излучения разряда высокой частоты лампа помещена в индуктор высокочастотного генератора.
При подаче напряжения на катод 3 и анод 4 между ними возбуждается разряд, ограниченный капилляром 5. При использовании для возбуждения разряда высокой частоты (на фиг. не показан) через индуктор, окружающий колбу 1, пропускают ток от высокочастотного генератора, в результате чего внутри индуктора генерируется высокочастотное магнитное поле, направленное вдоль оси индуктора. Под действием этого поля внутри колбы 1 индуцируется кольцевое электрическое поле, возбуждающее и поддерживающее электрический разряд. УФ-излучение, возбуждаемое разрядом, проходит через внутренний слой 9 металла, окно 2, внешний слой 8 металла и выводится из лампы, попадая в дальнейшем в рабочий объем фотоионизационного детектора. При этом на поверхности лампы появляется отрицательный заряд. Плотность заряда составляет ≈ 10-10 - 10-11 Кл/см2. Металлические слои 8 и 9 образуют обкладки конденсатора, внутри которого находится диэлектрик (окно 2). При подключении металлических слоев 8 и 9 к источнику питания 11 между ними возникает электрическое поле. Если внешний слой 8 соединить с отрицательным полюсом источника питания 11 и заземлить, а внутренний слой 9 соединить с положительным полюсом источника питания, то формируется защитное электрическое поле, направленное вдоль внешней нормали от окна лампы. Величина этого поля зависит от разности потенциалов между металлическими слоями 8 и 9. Для того, чтобы скомпенсировать влияние отрицательного заряда с плотностью ≈ 10-10 - 10-9 Кл/см2 при толщине окна 2 из MgF2, необходимо приложить разность потенциалов величиной 200 - 300 В.
Поле, создаваемое слоями 8 и 9, направлено встречно по отношению к полю, создаваемому отрицательным зарядом, имеющимся на поверхности диэлектрика, и больше его по абсолютной величине. Результирующее поле направлено по нормали от окна лампы и отталкивает положительно заряженные частицы от поверхности окна, препятствуя их сорбции. В результате поверхность окна 2 остается чистой, поток излучения не меняется во времени, что обеспечивает стабильность излучения лампы и соответственно фотоионизационного детектора. Внешний заземленный слой металла 8 также экранирует рабочий объем фотоионизационного детектора, что улучшает его стабильность.
Изображенный на фиг. 2 вариант выполнения УФ-лампы отличается от описанного выше тем, что в слоях 8 и 9 металлических электродов выполнены отверстия 12 и 13 соответственно, расположенные по обе стороны окна 2 и имеющие общую ось, перпендикулярную поверхности окна 2 и совпадающую с осью разрядного промежутка, формируемого электродами 4 и 5.
Этот вариант выполнения используется тогда, когда материал слоев 8 и 9 металлических электродов не пропускает УФ-излучение, вывод которого из УФ-лампы осуществляется через окно 2 и отверстия 12 и 13 в слоях 8 и 9 металлических электродов, УФ-излучение, проходящее через отверстия 12 и 13, выводится во внутренний объем фотоионизационного детектора. В этом случае слои 8 и 9 металлических электродов также служат для создания электрического поля, компенсирующего отрицательный заряд, возникающий на поверхности окна 2, и отталкивающего положительные ионы веществ, находящихся во внутреннем объеме фотоионизационного детектора.
название | год | авторы | номер документа |
---|---|---|---|
УЛЬТРАФИОЛЕТОВАЯ ЛАМПА И ФОТОИОНИЗАЦИОННЫЙ ГАЗОАНАЛИЗАТОР НА ЕЕ ОСНОВЕ | 2002 |
|
RU2256255C2 |
УЛЬТРАФИОЛЕТОВАЯ ЛАМПА ДЛЯ ФОТОИОНИЗАЦИОННЫХ ДЕТЕКТОРОВ | 1992 |
|
RU2030019C1 |
УЛЬТРАФИОЛЕТОВАЯ ЛАМПА ДЛЯ ФОТОИОНИЗАЦИОННОГО ДЕТЕКТИРОВАНИЯ | 1994 |
|
RU2063093C1 |
ФОТОИОНИЗАЦИОННЫЙ ДЕТЕКТОР | 2010 |
|
RU2455633C1 |
ТЕРМОСТОЙКОЕ СОЕДИНЕНИЕ ОКНА С ОБОЛОЧКОЙ ПРИБОРА | 1995 |
|
RU2127464C1 |
ФОТОИОНИЗАЦИОННЫЙ ГАЗОАНАЛИЗАТОР | 2006 |
|
RU2298177C1 |
ФОТОИОНИЗАЦИОННЫЙ ДЕТЕКТОР ДЛЯ ГАЗОАНАЛИТИЧЕСКОЙ АППАРАТУРЫ | 2004 |
|
RU2247975C1 |
СПОСОБ АНАЛИЗА ПРИМЕСЕЙ ВЕЩЕСТВ В ГАЗЕ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2004 |
|
RU2315287C2 |
ФОТОИОНИЗАЦИОННЫЙ ГАЗОАНАЛИЗАТОР | 1998 |
|
RU2148821C1 |
СПОСОБ ПОЛУЧЕНИЯ ОЗОНА | 1998 |
|
RU2160701C2 |
Изобретение относится к источникам вакуумного УФ-излучения и может найти применение в газоанализаторах, основанных на фотоионизации веществ. Изобретение позволяет уменьшить загрязнение окон Уф-ламп. УФ-лампа для фотоионизационного детектора содержит герметичную колбу из твердого материала, не проницаемого для УФ-излучения, заполненную смесью инертных газов и/или водородом, электроды для формирования электрического разряда, установленные в колбе, и окно из проницаемого для УФ-излучения материала, установленное на торце колбы и герметично соединенное с ее стенками. Окно снабжено электродами для формирования защитного электрического поля, выполненными в виде слоев металла, нанесенных на внутреннюю и внешнюю поверхности окна лампы, и источником постоянного напряжения. Электрод, нанесенный на внешнюю поверхность окна, соединен с отрицательным полюсом напряжения, а электрод, нанесенный на внутреннюю поверхность окна лампы, соединен с положительным полюсом источника напряжения. 3 з.п.ф-лы, 2 ил.
DE 4320607 A, 16.07.90 | |||
УСТРОЙСТВО для ИЗМЕРЕНИЯ ДЕФОРМАЦИЙ ПОРОДЫ | 0 |
|
SU348915A1 |
КОРОБКА ПОДАЧ ТОКАРНО-ВИНТОРЕЗНОГО СТАНКА | 0 |
|
SU312732A1 |
Авторы
Даты
1999-04-20—Публикация
1997-05-19—Подача