ЖАРОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ Российский патент 1999 года по МПК C22C19/05 

Описание патента на изобретение RU2131943C1

Изобретение относится к области металлургии, в частности металлургии жаропрочных сплавов на основе никеля, предназначенных для эксплуатации при повышенных температурах в деталях газотурбинных двигателей.

Известен жаропрочный сплав на основе никеля, состава в мас.%:
углерод - 0,04 - 0,08
хром - 13,0 - 16,0
кобальт - 8,0 - 12,0
молибден - 4,0 - 6,0
ниобий - 2,4 - 3,5
титан - 2,4 - 3,0
алюминий - 2,2 - 2,8
бор - 0,001 - 0,01
церий - 0,001 - 0,03
лантан - 0,01 - 0,1
никель - остальное
(а.с. СССР N 274924, C 22 C 19/00, 1970 г.) - прототип.

Недостатком этого сплава является низкий уровень прочностных характеристик при комнатной и рабочих температурах, что приводит к преждевременному разрушению сплава.

Предлагается сплав на основе никеля, содержащий компоненты в следующем соотношении в мас.%:
углерод - 0,02 - 0,10
хром - 0,02 - 0,10
вольфрам - 5,2 - 5,9
молибден - 3,6 - 4,3
титан - 1,5 - 3,4
алюминий - 4,3 - 5,3
ниобий - 1,0 - 2,0
гафний - 0,1 - 0,4
бор - 0,001 - 0,05
цирконий - 0,001 - 0,05
магний - 0,001 - 0,08
церий - 0,001 - 0,06
никель - остальное
Прелагаемый сплав отливается от прототипа тем, что в него дополнительно введены вольфрам, цирконий, гафний и магний при следующем соотношении компонентов в мас.%:
углерод - 0,02 - 0,10
хром - 8,0 - 10,0
вольфрам - 5,2 - 5,9
молибден - 3,6 - 4,3
титан - 1,5 - 3,4
алюминий - 4,3 - 5,3
ниобий - 1,0 - 2,0
гафний - 0,1 - 0,4
бор - 0,001 - 0,05
цирконий - 0,001 - 0,05
магний - 0,001 - 0,08
церий - 0,001 - 0,06
никель - остальное
Технический результат - повышение прочностных характеристик сплава, что ведет к увеличению ресурса работы двигателя при повышенных рабочих температурах.

Сплав с предлагаемым количеством компонентов и их соотношением обеспечивает комплекс высоких прочностных характеристик и нечувствительность к концентраторам напряжений за счет создания структуры с равнопрочными матрицей и границами зерен.

Упрочнение твердого раствора происходит вследствие замедления процесса диффузии при рабочих температурах, тем самым задерживается развитие третьей стадии ползучести, вызывающей разупрочнение и разрушение сплава. Прочность границ зерен повышается за счет образования стабильных карбидов типа МС, которые в отличие от М6С и М23С6 не образуют сетки по границам зерен.

Снижение количества вводимых в сплав компонентов ниже предлагаемых пределов, приводит к уменьшению количества γ′- фазы, разупрочнению сплава и, следствие, снижается общий уровень механических свойств. Увеличение количества вводимых компонентов выше предлагаемых пределов вызывает образование охрупчиваюших топологически плотноупакованных фаз и уменьшает область гомогенности сплава; в результате значительно снижаются пластические характеристики и технологичность сплава.

Примеры:
Были получены сплавы предлагаемого состава (N 1, 2, 3), выходящие за пределы предлагаемого состава (N 4, 5) и состава прототипа по следующей технологической схеме: вакуумно-индукционная плавка, распыление методом вращающегося электрода, горячее изостатическое прессование заготовок дисков, термообработка по оптимальному режиму.

Составы сплавов приведены в табл. 1. (табл. 1 и 2 см. в конце описания).

Механические характеристики предлагаемого сплава, сплава, выходящего за пределы предлагаемого, и сплава-прототипа были получены после испытания по стандартным методикам и представлены в табл. 2.

Из сопоставления кратковременных механических свойств при 20oC, длительной прочности и коэффициента чувствительности к концентраторам напряжения видно, что у предлагаемого сплава уровень механических свойств значительно выше, в частности, предел прочности повышается на 15 - 17 кГс/мм2, предел текучести - на 14 - 17 кГс/мм2.

Особенно значительное превышение - по длительной прочности - 18 - 19 кГс/мм2. При этом предлагаемый сплав проявляет нечувствительность к концентраторам напряжения, σнадргл≥ 1.
Таким образом, применение предлагаемого сплава для изготовления деталей газотурбинных двигателей позволяет повысить ресурс работы двигателей в 1,5 - 2 раза.

Похожие патенты RU2131943C1

название год авторы номер документа
ЖАРОПРОЧНЫЙ ПОРОШКОВЫЙ НИКЕЛЕВЫЙ СПЛАВ 2008
  • Гарибов Генрих Саркисович
  • Востриков Алексей Владимирович
  • Гриц Нина Михайловна
  • Федоренко Елизавета Александровна
  • Казберович Алексей Михайлович
  • Иноземцев Александр Александрович
  • Андрейченко Игорь Леонардович
  • Карягин Дмитрий Андреевич
RU2371495C1
ЖАРОПРОЧНЫЙ ПОРОШКОВЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ 2009
  • Гарибов Генрих Саркисович
  • Гриц Нина Михайловна
  • Иноземцев Александр Александрович
  • Востриков Алексей Владимирович
  • Федоренко Елизавета Александровна
  • Андрейченко Игорь Леонардович
  • Зубарев Геннадий Иванович
  • Карягин Дмитрий Андреевич
RU2410457C1
ЖАРОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ 1993
  • Рудницкий Е.Н.
  • Еременко В.И.
  • Фаткуллин О.Х.
  • Гущина Ф.Л.
  • Гриц Н.М.
  • Буславский Л.С.
  • Рогозенкова Н.В.
RU2044095C1
ПОРОШКОВЫЙ ЖАРОПРОЧНЫЙ НИКЕЛЕВЫЙ СПЛАВ 2008
  • Гарибов Генрих Саркисович
  • Востриков Алексей Владимирович
  • Гриц Нина Михайловна
  • Федоренко Елизавета Александровна
  • Казберович Алексей Михайлович
  • Власова Ольга Николаевна
  • Иноземцев Александр Александрович
  • Андрейченко Игорь Леонардович
  • Карягин Дмитрий Андреевич
RU2368683C1
ЖАРОПРОЧНЫЙ ПОРОШКОВЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ, СТОЙКИЙ К СУЛЬФИДНОЙ КОРРОЗИИ И ИЗДЕЛИЕ, ИЗГОТОВЛЕННОЕ ИЗ НЕГО 2013
  • Синявский Владимир Сергеевич
  • Александрова Татьяна Васильевна
  • Востриков Алексей Владимирович
  • Гриц Нина Михайловна
RU2516681C1
СПЛАВ НА ОСНОВЕ НИКЕЛЯ 1992
  • Фаткуллин О.Х.
  • Буславский Л.С.
  • Еременко В.И.
  • Рудницкий Е.Н.
  • Гриц Н.М.
  • Шлыков С.О.
  • Федоренко Е.А.
RU2009244C1
ПОРОШКОВЫЙ ЖАРОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ 2006
  • Качанов Евгений Борисович
  • Еременко Василий Иванович
  • Гриц Нина Михайловна
  • Федоренко Елизавета Александровна
  • Власова Ольга Николаевна
RU2299919C1
Жаропрочный гранулируемый сплав на основе никеля 2022
  • Бер Леонид Борисович
  • Казберович Алексей Михайлович
  • Ваулин Дмитрий Дмитриевич
RU2789527C1
ПОРОШКОВЫЙ ЖАРОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ 2010
  • Еременко Василий Иванович
  • Фаткуллин Олег Хикметович
  • Фурашов Алексей Сергеевич
  • Фаткуллин Станислав Игоревич
  • Щукарев Анатолий Константинович
RU2428498C1
ЖАРОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ 1998
  • Семенов В.Н.
  • Бондарев Б.И.
  • Фаткуллин О.Х.
  • Еременко В.И.
  • Гриц Н.М.
  • Пестов Ю.А.
  • Деркач Г.Г.
  • Железняк О.Н.
  • Каторгин Б.И.
  • Зайцев М.В.
  • Чванов В.К.
  • Мовчан Ю.В.
  • Сигаев В.А.
  • Прусаков Б.А.
  • Евмененко Ф.Ф.
RU2160789C2

Иллюстрации к изобретению RU 2 131 943 C1

Реферат патента 1999 года ЖАРОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ

Изобретение относится к области металлургии. Жаропрочный cплав на основе никеля содержит следующие компоненты, мас.%: углерод 0,02 - 0,10, хром 8,0-10,0, вольфрам 5,2-5,9, молибден 0,6-4,3, титан 1,5-3,4, алюминий 4,3-5,3, ниобий 1,0-2,0, гафний 0,1-0,4, бор 0,001-0,05, цирконий 0,001-0,05, магний 0,001-0,08, церий 0,001-0,06, никель остальное. Сплав обеспечивает комплекс высоких прочностных характеристик и нечувствительность к концентратором напряжений. 2 табл.

Формула изобретения RU 2 131 943 C1

Жаропрочный сплав на основе никеля, содержащий углерод, хром, молибден, ниобий, титан, алюминий, бор, церий, отличающийся тем, что дополнительно содержит вольфрам, цирконий, гафний и магний при следующем соотношении компонентов, мас.%:
Углерод - 0,02 - 0,10
Хром - 8,0 -10,0
Вольфрам - 5,2 - 5,9
Молибден - 3,6 - 4,3
Титан - 1,5 - 3,4
Алюминий - 4,3 - 5,3
Ниобий - 1,0 - 2,0
Гафний - 0,1 - 0,4
Бора - 0,001 - 0,05
Цирконий - 0,001 - 0,05
Магний - 0,001 - 0,08
Церий - 0,001 - 0,06
Никель - Остальное

Документы, цитированные в отчете о поиске Патент 1999 года RU2131943C1

Сплав на основе никеля 1969
  • Терехов К.И.
  • Туманов А.Т.
  • Маркина Л.С.
  • Околелова К.А.
  • Белов А.Ф.
  • Бобовников Н.Д.
  • Тулянкин Ф.В.
  • Засецкий П.А.
  • Жучин В.Н.
  • Топилин В.В.
  • Дзугутов М.Я.
  • Подольский М.С.
SU274924A1
Жаропрочный коррозионностойкий сплав на основе никеля 1980
  • Костырко О.С.
  • Мяльница Г.Ф.
  • Матюшенко Н.И.
  • Жирицкий О.Г.
  • Овчаренко Е.Г.
  • Волощенко Н.Н.
  • Педан Т.Н.
  • Богаевский В.В.
  • Орышич И.В.
SU959443A1
ЛИТЕЙНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ 1978
  • Кишкин С.Т.
  • Логунов А.В.
  • Шпунт К.Я.
  • Торопов В.М.
  • Соболев Г.И.
  • Морозова С.Г.
  • Захаров А.С.
  • Степанов В.М.
  • Сидоров В.В.
  • Балашов А.П.
  • Чумаков В.А.
  • Кац Э.Л.
  • Бондаренко Ю.А.
  • Сонюшкина А.П.
  • Глезер Г.М.
  • Ларионов В.Н.
  • Напольнов А.Н.
  • Славин Ю.Т.
  • Михайлов И.А.
RU722330C
US 5069873 C, 03.12.91
Способ определения коэффициента эллиптичности антенн 2020
  • Кирилюк Сергей Дмитриевич
  • Кожевников Сергей Васильевич
  • Крохмаль Юрий Владимирович
  • Смирнов Павел Леонидович
  • Спиридонов Константин Алексеевич
RU2741271C1
EP 0508058 A1, 14.10.92
JP 62158845 A, 14.07.87.

RU 2 131 943 C1

Авторы

Фаткуллин О.Х.

Еременко В.И.

Гриц Н.М.

Федоренко Е.А.

Правикова Л.А.

Даты

1999-06-20Публикация

1997-03-05Подача