Бинарный космический двигатель (БКД) представляет собой комбинированный компактный двигатель, содержащий в передней части нейтронный облучатель, соединенный с микротермоядерным реактором, переходящим в электрический (электронный) ракетный двигатель (ЭРД). Предназначен для скоростных космических кораблей.
Прототипом является ядерный ракетный двигатель (ЯРД), содержащий корпус (с расположенными в нем элементами двигателя), бак с жидким водородом, соединенный через насос, зону нагрева (реактор) и турбину с центральным каналом, заканчивающимся зоной ускорения сопла с электрическим ракетным двигателем, включающим кольцевидные анод и катод, и ядерный реактор (Корлисс У.Р. "Ракетные двигатели для космических полетов", Издательство иностранной литературы, М., 1962, с. 322-323, фиг. 107).
ЯРД в 22 раза создает меньше энергии, чем при реакции ядерного синтеза литий-6 + нейтрон и в 84,5 раза меньше, чем при термоядерной реакции дейтерий + тритий. Кроме того ЯРД образует большое количество радиоактивных отходов, которые являются балластом для космического корабля. Использование энергии термоядерного синтеза для получения импульса более 3 • 107 м/с.
На фиг. 1 изображен продольный разрез термоядерного космического двигателя, расположенного в верхней трети космического корабля, корпус которого имеет большую площадь и служит нейтрализатором положительного объемного заряда при работе электронного ЭРД.
На фиг. 2 изображен продольный разрез нейтронного облучателя с микротермоядерным реактором.
На фиг. 3 изображен продольный разрез электронного ЭРД.
Космический бинарный двигатель содержит корпус ядерного ЯРД 1, литиевую трубку 2 с литием-6, насос 3, закачивающий литий-6 в нейтронный облучатель 4, который медленными нейтронами облучает литий-6, кольцевидный катод 5 (фиг. 2), активную зону 6, где замедлитель нейтронов 7 из оксида бериллия замедляет нейтроны. Карбид плутония 8 излучает нейтроны с энергией 1000 МВт. Отражатель нейтронов из оксида бериллия 9 отражает нейтроны, а соленоидная катушка 10 создает с кольцевым анодом 11 асимметричное магнитное поле. Под действием силы Ампера ядерное топливо проходит в микротермоядерный реактор 12, содержащий дейтериевую трубку 13, насос 14, закачивающий дейтерий в активную зону 15 для термоядерной реакции образовавшегося трития с поступающим дейтерием. Стенка 16 реактора выполнена из карбида циркония с зеркальным покрытием и окружена соленоидной катушкой 17, защищающей стенку реактора.
Бак 18 с жидким водородом водородной трубой 19 через насос 20 соединен с рубашкой. Труба 21 для воздуха используется, когда в баке вместо водорода находится жидкий азот. Насос 22 закачивает воздух в рубашку. Рубашка 23 охлаждает соленоидную катушку, стенку центрального канала и нагревает газ. Газовая труба 24 через турбину соединена с центральным каналом. Горячий газ вращает турбину 25 с электрогенератором 26, который вырабатывает электроэнергию. К электросети подключены аккумулятор 27 и резонансный конденсатор 28. Двигатель содержит центральный канал 29. Соленоидная катушка 30 защищает катод, анод, стенку центрального канала и создает с анодом асимметричное магнитное поле. В зоне ускорения под действием силы Ампера ускоряется ионизированный водород. Стенка 31 центрального канала выполнена из карбида циркония (температура плавления 3800oC) с зеркальным покрытием. Электрический ракетный двигатель содержит кольцевидный катод 32 и кольцевидный анод 33. Магнитное сопло 34 выдавливает и ускоряет ионизированный водород, создавая тяговую силу.
На фиг. 3 изображен продольный разрез электронного ЭРД. Двигатель содержит корпус 35. Полушаровидный катод 36 имеет форму половины полого шара. Соленоидная катушка 37 защищает кольцевидный анод от электронов и создает с анодом асимметричное магнитное поле. Под действием силы Ампера ускоряются электроны. Двигатель содержит кварцевый изолятор 38 и кольцевидный анод 40. Магнитное сопло выжимает и ускоряет электроны.
Работа двигателя осуществляется следующим образом.
По трубке 2 литий-6 закачивается насосом 3 в нейтронный облучатель 4. Облученный литий и тритий движутся в микротермоядерный реактор 12, в котором происходит термоядерная реакция образовавшегося трития с поступающим дейтерием по трубке 13 с выделением большого количества энергии. Из бака с жидким водородом 18 по трубке 19 насосом 20 закачивается водород в рубашку 23. Водород нагревается, проходя по газовой трубе 24, вращает турбину 25 с электрогенератором 26, соединенным с аккумулятором 27 и резонансным конденсатором 28. Горячий водород проходит в центральный канал 29 и превращается в ионизированный водород, выходя из сопла 34, создает тяговую силу. Электронный ЭРД 35 расположен в нижней части космического корабля. При включении катод 36 излучает электроны с высокой энергией. Соленоидная катушка 37 вокруг кварцевого изолятора 38 и кольцевидный анод 39 создают асимметричное магнитное поле в зоне ускорения. Под действием силы Ампера ускоряются электроны, которые выжимаются и ускоряются магнитным соплом 40. Выходя из магнитного сопла, они создают тяговую силу с импульсом до 2 • 108 м/с.
название | год | авторы | номер документа |
---|---|---|---|
ЯДЕРНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ | 1995 |
|
RU2113617C1 |
ТЕРМОЯДЕРНЫЙ КОСМИЧЕСКИЙ ДВИГАТЕЛЬ | 1999 |
|
RU2171914C1 |
АВИАКОСМИЧЕСКИЕ ДВИГАТЕЛИ ДЛЯ КОСМИЧЕСКИХ САМОЛЕТОВ | 1997 |
|
RU2140014C1 |
ЯДЕРНЫЙ КОСМИЧЕСКИЙ ДВИГАТЕЛЬ | 1998 |
|
RU2156378C2 |
ТЕРМОЯДЕРНАЯ ЭЛЕКТРОСТАНЦИЯ | 1998 |
|
RU2156000C2 |
ЭЛЕКТРИЧЕСКИЙ РАКЕТНЫЙ ДВИГАТЕЛЬ | 1996 |
|
RU2121076C1 |
КОСМИЧЕСКИЙ ДВИГАТЕЛЬ | 2000 |
|
RU2183764C2 |
ПРЯМОТОЧНЫЙ ВОЗДУШНО-ЭЛЕКТРИЧЕСКИЙ РЕАКТИВНЫЙ ДВИГАТЕЛЬ | 1997 |
|
RU2122651C1 |
СПОСОБ СОЗДАНИЯ РЕАКТИВНОЙ ТЯГИ ЯДЕРНОГО РАКЕТНОГО ДВИГАТЕЛЯ | 1998 |
|
RU2151324C1 |
УСТАНОВКА ДЛЯ ПРОИЗВОДСТВА ВОДОРОДА, САЖИ И АЛМАЗОВ | 1998 |
|
RU2139236C1 |
Изобретение предназначено для использования в космической технике. Бинарный космический двигатель /БКД/ представляет собой комбинированный компактный двигатель, содержащий в передней части нейтронный облучатель, соединенный с микротермоядерным реактором и переходящий в центральный канал. Спарен с электронным ракетным двигателем /ЭРД/. БКД содержит бак с жидким водородом, водородную трубу, насос, выход газов и турбину. В передней части ядерного ракетного двигателя литиевая трубка с литием-6 через насос и нейтронный облучатель соединена с микроядерным реактором, соединенным с центральным каналом, заканчивающимся магнитным соплом, выдавливающим и ускоряющим ионизированный водород. Изобретение позволяет создать импульс более 3•107 м/с. 3 ил.
Бинарный двигатель, содержащий корпус, бак с жидким водородом, соединенный через насос, зону нагрева и турбину с центральным каналом, заканчивающимся зоной ускорения сопла с электрическим ракетным двигателем, включающим кольцевидные анод и катод и ядерный реактор, отличающийся тем, что ядерный реактор выполнен в виде микротермоядерного реактора с соленоидной катушкой, соединенного с дейтериевой трубкой с дейтерием и через нейтронный облучатель, включающий отражатель нейтронов из оксида бериллия, с литиевой трубкой с литием-6, причем выход микротермоядерного реактора соединен с центральным каналом, который окружен второй соленоидный катушкой, а корпус является нейтрализатором положительного объемного заряда.
Корлисс У.Р | |||
Ракетные двигатели для космических полетов | |||
- М.: Издательство иностранной литературы, 1962, с | |||
Ледорезный аппарат | 1921 |
|
SU322A1 |
Счетный сектор | 1919 |
|
SU107A1 |
RU 94033431 A1, 10.07.96 | |||
RU 94036369 A1, 10.07.96. |
Авторы
Даты
1999-06-20—Публикация
1997-10-20—Подача