Изобретение относится к области химико-термической обработки заготовок, деталей и инструмента, может быть использовано в машиностроении.
Из патентной литературы известен метод образования слоя карбида и нитрида на поверхности обрабатываемого материала во флюидизированном слое печи, который состоит из следующих этапов: помещение огнеупорного порошка, хотя бы одной емкости с отверстиями, наполненной обрабатывающим компонентом; указанный материал располагается в печи таким образом, что предотвращает его контакт с емкостью; указанный обрабатывающий компонент представляет собой порошок, состоящий из: порошка хотя бы одного карбидо- или нитридообразующего металла или сплава и порошка хотя бы одного соединения, выбранного из группы хлоридов, фторидов, бромидов, йодистых соединений и борофторидов щелочных и щелочноземельных металлов и хотя бы одного соединения аммония и галоидного соединения какого-либо металла; и при введении флюидизирующего газа в указанную нагретую печь для флюидизации обрабатывающего компонента порядок этапов изменяется /Заявка РСТ 0 87/02073, опубл. 09.04.87/.
Сущность изобретения.
Способ химико-термической обработки характеризуется следующими примерами: помещение в печь твердого измельченного вещества, нагрев печи, введение флюидизируюшего газа, размещение обрабатываемых деталей в печи с флюидизированным слоем, отличающийся тем, что в качестве материала флюидизированного слоя используют катализатор - мелкосферический оксид алюминия, пропитанный оксидами никеля и магния. В катализаторе используют порошкообразный оксид алюминия с диаметром частиц 0,4 - 1,0 мм.
Технический результат - ускорение протекания химико-термических реакций за счет ускорения реакций сгорания и разложения углеводородных газов и аммиака в прирешеточной зоне; ускорение скорости нагрева обрабатываемых изделий; уменьшение высоты прирешеточной зоны и увеличение протяженности рабочей зоны, при сохранении общей высоты кипящего /флюидизированного/ слоя; уменьшение затрат электроэнергии и потребления газа на единицу продукции; повышение экологической безопасности.
Проблемы получения высококачественных деталей, инструмента и заготовок неразрывно связаны с технологией объемной и поверхностной химико-термической обработки в изотермических защитных средах при температурах в интервале 150-1250 oC. Предлагаемая технология и оборудование кипящего слоя позволяют получать высококачественную продукцию с минимальными трудовыми, материальными и эксплуатационными затратами.
Технология химико-термической обработки в кипящем /флюидизированном/ слое специального катализатора удовлетворяет требованиям таких систем и производств, которые скоординированы с колебаниями спроса как на количество обработанных изделий, так и на их качество.
Технология кипящего /флюидизированного/ слоя в термообработке хорошо адаптируется с методами создания оборудования, в основе которого лежат так называемые ТАСТ - факторы: TiME/время/ - AVZILABILITY/доступность/ - COST/стоимость/ - TOGHNESS/воспроизводимость/.
Фактор времени - /скорость нагрева/ в кипящем слое близка к скорости нагрева в жидкой соляной ванне. Так, по данным разработчика при диаметре тигля 300 мм и глубине кипящего слоя около 1000 мм при мощности в 40 кВт садка размером около 80 мм в диаметре и 800 мм длиной, весом около 130 - 140 кг, прогревается за 45 - 60 мин.
Аналогично снижается время прогрева под отпуск до 300 градусов такой же садки, что составляет 20 - 25 мин.
Скорость процессов химико-термической обработки (нитроцементация, карбонитрирование, цементация и т.п.) также идет со значительным превышением по сравнению с табулированным.
По результатам практики разработчика цементация при 920 - 940oC дает эффективную глубину слоя 0,6 мм через 1 час и 1,0 - 1,2 мм через 3 часа. Карбонитрирование дает эффективную глубину слоя 0,4 мм через 1 час при 880 - 900oC и 0,25 мм через 45 мин при 870oC.
Фактор доступности - (запуск, остановка) - использование катализатора в качестве материала для кипения приводит к уменьшению нагреваемой массы среды по сравнению с соляной ванной, устраняет полностью наличие скрытого тепла при плавлении солей около рабочей температуры, впоследствие чего значительно сокращается время нагрева и при этом нет необходимости поддерживать температуру в ночное время: нагрев из холодного состояния до 870oC достигается за 1 час после запуска.
Способность менять атмосферу в считанные минуты дает возможность пользователю иметь большую степень свободы, необходимую при ситуациях "обработка сразу при поступлении", что позволяет технологам легко менять садки и различные типы обработки деталей в считанные минуты, позволяя немедленно обработать "срочные" садки: так, например, в течение 7-часовой смены были проведены обычные технологии по нормализации, нейтральной закалке, карбонитрирование и цементация над различными садками деталей суммарным весом 500 кг.
Способность кипящего слоя работать при низких температурах особенно полезна в процессах азотирования и низкотемпературной нитроцементации, в которых стандартные печи, предназначенные только для этих видов обработки, не могут коммерчески себя оправдать.
Фактор стоимости - капитальные затраты, отнесенные к единице объема садки в печах кипящего слоя и в традиционных печах с гораздо большим объемом садки по данным разработчика, взятым из отечественного и зарубежного опыта, вдвое ниже, за счет более высокой производительности печей кипящего слоя.
Фактор воспроизводимости - (надежность, устройство, техобслуживание) - обусловлен природой производства, скоординированной с колебаниями спроса, т. е. с работой "по требованию", диктующей меньшие садки и большее число обработок.
Технология кипящего слоя гарантирует своей природой, что каждая деталь подвергается воздействию такой же атмосферы, нагревательному эффекту и времени пребывания, это позволяет получать равномерную твердость по всему сечению при объемной закалке и такое же качество по глубине слоя при поверхностной обработке. Обработка полых частей дает одинаковую однородность и края, и центра. При обработке пористых материалов поры "залечиваются" равномерно и с высокой степенью "схватываемости" за счет высокой протяженности межзеренных границ порошковых изделий.
Примером конкретного применения указанного способа и оборудования служит установка кипящего слоя "Корунд-300". (ТУ 3442.001.07538049-95. Сертификат РОСС RU. ME 71.B00083. Лицензия N 83 от 13.08.1997).
В реторту в качестве материала кипящего слоя засыпается алюмоникельмагниевый катализатор марки НАМ ТУ 6-68-119-91. Через газораспределительную решетку внизу реторты подается газовоздушная смесь (флюидизирующий газ) для ожижения слоя и создания атмосферы. Экспериментально была определена общая высота кипения, высота прирешеточной зоны и высота рабочего пространства. Под рабочим пространством подразумевается зона стабильно получаемого необходимого результата термообработки. В ходе эксперимента было определено, что общая высота зоны кипения катализатора в 1,5 - 1,7 раза больше высоты обрабатываемой детали. В аналогичном японском оборудовании высота зоны кипения в 2 - 3 раза больше высоты деталей.
Уменьшение высоты прирешеточной зоны позволяет увеличить высоту рабочего пространства при сохранении общей высоты кипящего слоя, увеличив тем самым производительность оборудования. Это ведет к уменьшению себестоимости термообработки за счет снижения расходов электроэнергии и потребления газов на единицу продукции.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ХИМИКО-ТЕРМИЧЕСКОЙ ОБРАБОТКИ | 2002 |
|
RU2234555C2 |
СПОСОБ ХИМИКО-ТЕРМИЧЕСКОЙ ОБРАБОТКИ | 2002 |
|
RU2235145C2 |
СПОСОБ ХИМИКО-ТЕРМИЧЕСКОЙ ОБРАБОТКИ | 2002 |
|
RU2235144C2 |
СПОСОБ ПОЛУЧЕНИЯ ИЗДЕЛИЙ ИЗ МЕТАЛЛОВ И СПЛАВОВ, ИМЕЮЩИХ СЛОИСТУЮ СТРУКТУРУ, ОБУСЛОВЛЕННУЮ КОНТРАСТНЫМИ КОНЦЕНТРАЦИЯМИ ЛЕГИРУЮЩИХ ЭЛЕМЕНТОВ, НАПРИМЕР, УГЛЕРОДА И АЗОТА, ВНЕДРЯЕМЫХ В МЕТАЛЛ МЕТОДОМ ХИМИКО-ТЕРМИЧЕСКОЙ ОБРАБОТКИ | 2002 |
|
RU2235146C2 |
СПОСОБ ПАРООКСИДИРОВАНИЯ СПЕЧЕННЫХ ИЗДЕЛИЙ ИЗ ПОРОШКОВ ЖЕЛЕЗА | 2002 |
|
RU2222411C2 |
СПОСОБ ГАЗОВОЙ ТЕРМИЧЕСКОЙ И ХИМИКО-ТЕРМИЧЕСКОЙ ОБРАБОТКИ ИЗДЕЛИЙ В "КИПЯЩЕМ СЛОЕ" НАНОСТРУКТУРИРОВАННОГО КАТАЛИЗАТОРА | 2009 |
|
RU2402631C1 |
ЭЛЕКТРОПЕЧЬ ДЛЯ ТЕРМИЧЕСКОЙ И ХИМИКО-ТЕРМИЧЕСКОЙ ОБРАБОТКИ | 2002 |
|
RU2219452C1 |
Способ газовой цементации стальных изделий | 1991 |
|
SU1822450A3 |
Способ газовой цементации стальных изделий | 2022 |
|
RU2796089C1 |
Способ химико-термической обработки металлических изделий | 1989 |
|
SU1740491A1 |
Изобретение относится к способам химико-термической обработки. Способ химико-термической обработки включает помещение в печь твердого измельченного вещества, нагрев печи, введение флюидизирующего газа, размещение обрабатываемых деталей в печи с флюидизированным слоем, отличающийся тем, что в качестве материала флюидизированного слоя используют катализатор - мелкосферический оксид алюминия, пропитанный оксидами никеля и магния, причем используют порошкообразный оксид алюминия с диаметром частиц 0,4 - 1,0 мм. Технический результат заключается в увеличении производительности оборудования, что ведет к уменьшению себестоимости обработки. 1 з.п.ф-лы.
Торфодобывающая машина с вращающимся измельчающим орудием | 1922 |
|
SU87A1 |
US 3900613 C, 19.08.75 | |||
DE 3630487 A1, 20.01.87 | |||
Способ @ - @ -ионирования воды | 1982 |
|
SU1047843A1 |
US 4637837 C, 20.01.87 | |||
Грачев С.В | |||
и др | |||
Особенности высокотемпературных процессов нанесения износостойких покрытий в виброкипящем слое | |||
Современное оборудование и технология термической и химико-термической обработки металлических материалов | |||
- М.: Знание, 1989, с.105. |
Авторы
Даты
1999-06-27—Публикация
1998-09-01—Подача