Изобретение относится к холодильной технике и может быть использовано, например, в парокомпрессионных холодильных машинах с конденсатором воздушного охлаждения, работающих круглогодично в широком диапазоне температур охлаждающего воздуха.
Известны конденсаторы с воздушным охлаждением, применяемые в холодильных установках (Холодильная техника. Энциклопедический справочник. Ленинград, Госторгиздат, 1960, с. 268) (1). Однако, существующие конструкции холодильных машин не полностью удовлетворяют требованиям, предъявляемым к ним. Одним из недостатков является то, что такие машины удовлетворительно работают при относительно высоких температурах охлаждающего воздуха.
При значительном повышении температуры охлаждающего воздуха уменьшается давление конденсации. Это приводит к уменьшению расхода холодильного агента и уменьшению холодопроизводительности, так как уменьшается перепад давлений на расширительном устройстве.
Известно, что наличие в системе неконденсирующихся газов приводит к уменьшению эффекта теплоотдачи и повышению давления конденсации ((1), с. 132).
Известны воздухоотделители, предназначенные для отвода неконденсирующихся газов из системы ((1), с. 363).
В части способа ближайшим аналогом заявленного изобретения является способ регулирования давления в конденсаторе холодильной машины, работающей по парокомпрессионному циклу с воздушным охлаждением конденсатора и содержащей объединенные в контур компрессор, конденсатор, расширительное устройство и испаритель, в котором подтапливают часть теплообменной поверхности конденсатора жидким холодильным агентом (см. Ужанский В.С., Автоматизация холодильных машин и установок, Москва, Легкая и пищевая промышленность, с. 102-112) (2).
В части устройства ближайшим аналогом заявленного изобретения является регулятор перепада давлений в конденсаторе холодильной машины, работающей по парокомпрессионному циклу с воздушным охлаждением конденсатора, обеспечивающий уменьшение проходного сечения на выходе из конденсатора и перепуск части паров хладагента после компрессора в линейный ресивер с целью подтопления конденсатора (см. SU 1241040 A1, Кл. F 25 B 49/00, 1986).
Техническим результатом изобретения является повышение холодопроизводительности и эксплуатационной надежности парокомпрессионной холодильной машины с воздушным охлаждением конденсатора при пониженных температурах охлаждающего воздуха.
Указанный результат достигается тем, что для повышения давления в конденсаторе в контур циркуляции холодильного агента вводится часть неконденсирующегося газа, который, накапливаясь в конденсаторе, повышает давление в нем на величину собственного парциального давления и за счет уменьшения коэффициента теплоотдачи на внутренней поверхности конденсатора. При этом увеличивается перепад давлений на расширительном устройстве до величины, достаточной для нормального питания испарителя. Для понижения давления в конденсаторе часть этого газа отбирают из контура циркуляции холодильного агента. Регулятор давления в конденсаторе холодильной машины, реализующей предложенный способ, включает емкость, содержащую неконденсирующийся газ, причем емкость соединена со сторонами высокого, между компрессором и конденсатором, и низкого давления холодильной машины трубопроводами с запорными вентилями. Неконденсирующийся газ подается в контур циркуляции холодильного агента на стороне низкого давления, а отбирается со стороны высокого давления. Емкость неконденсирующегося газа выполнена охлаждаемой кипящим холодильным агентом и имеет клапан для отвода конденсата.
На чертеже представлена схема парокомпрессионной холодильной машины с регулятором давления в конденсаторе, реализующим данный способ. Холодильная машина включает в себя: компрессор 1, конденсатор 2, расширительное устройство 3, испаритель 4, емкость 5 неконденсирующегося газа, запорный вентиль BH1, линию 6 отвода неконденсирующегося газа с запорным вентилем BH2, линию 7 подачи неконденсирующегося газа с запорным вентилем BH3, линию 8 охлаждения отводимой смеси с запорным вентилем BH4, линию 9 слива холодильного агента из емкости 5 с клапаном 10, датчик давления 11.
Холодильная машина работает следующим образом. Пары холодильного агента сжимаются в компрессоре 1, затем направляются в конденсатор 2, где охлаждаются и конденсируются, отдавая теплоту охлаждающему воздуху, далее жидкий холодильный агент дросселируется в расширительном устройстве 3, частично испаряясь и понижая свою температуру, оттуда направляется в испаритель 4, где кипит, отбирая теплоту от охлаждаемого объекта, пары холодильного агента отсасываются компрессором 1, и цикл повторяется.
В установившемся режиме давление в конденсаторе, измеряемое датчиком давления 11, соответствует заданному.
При значительном понижении температуры воздуха, охлаждающего конденсатор, падает давление конденсации и уменьшается перепад давлений на расширительном устройстве, вследствие чего уменьшается расход холодильного агента и холодопроизводительность машины. В этом случае по сигналу датчика давления 11 порция неконденсирующегося газа из емкости 5 по линии 7 подается в контур циркуляции холодильного агента через вентиль BH3 на сторону низкого давления. Неконденсирующийся газ сжимается в компрессоре 1 вместе с холодильным агентом и попадает в конденсатор 2, где накапливается, при этом давление в конденсаторе 2, складывающееся из порциальных давлений неконденсирующегося газа и холодильного агента, повышается, увеличивая перепад давлений между сторонами всасывания и нагнетания. Вследствие этого увеличивается расход холодильного агента через расширительное устройство 3, обеспечивая необходимую холодопроизводительность.
При дальнейшем понижении температуры воздуха, охлаждающего конденсатор, в контур циркуляции холодильного агента подается следующая порция неконденсирующегося газа.
При повышении температуры воздуха, охлаждающего конденсатор, и давления в конденсаторе, необходимо вывести неконденсирующийся газ обратно в емкость 5. По сигналу датчика давления 11 закрывается вентиль BH1 и открывается вентиль BH4, при этом холодильный агент после расширительного устройства 3 проходит через емкость 5 по линии 8, охлаждая емкость и понижая давление в ней. Кратковременно открывается вентиль BH2 и перепускает порцию смеси неконденсирующегося газа и парообразного холодильного агента в емкость 5 по линии 6, при этом пары холодильного агента, попавшие в емкость из конденсатора 2 вместе с неконденсирующимся газом, конденсируются. Через клапан 10, по линии 9 жидкий холодильный агент из емкости 5 возвращается в контур холодильной машины. Вентиль BH4 закрывается, и открывается вентиль BH1, машина работает в обычном режиме.
При дальнейшем повышении температуры воздуха, охлаждающего конденсатор процедура повторяется.
В теплый период года, когда температура воздуха, охлаждающего конденсатор, достаточно высокая для нормальной работы машины, весь неконденсирующийся газ отводится в емкость 5.
Предлагаемый способ регулирования может быть применен вместе с устройством, отключающим, частично или полностью, принудительный обдув конденсатора охлаждающим воздухом.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ И СИСТЕМА ОХЛАЖДЕНИЯ БОРТОВОГО ОБОРУДОВАНИЯ ЛЕТАТЕЛЬНОГО АППАРАТА | 2018 |
|
RU2727220C2 |
СПОСОБ УДАЛЕНИЯ ЖИДКОГО ИЛИ ЗАМОРОЖЕННОГО АГЕНТА ИЗ ПРОДУКТА | 2004 |
|
RU2284737C2 |
СИСТЕМА ТЕРМОРЕГУЛИРОВАНИЯ ОРБИТАЛЬНОЙ СТАНЦИИ | 1987 |
|
SU1839913A1 |
Стенд для испытания холодильных компрессоров | 1990 |
|
SU1778364A1 |
СИСТЕМА ЖИДКОСТНОГО ОХЛАЖДЕНИЯ | 1991 |
|
RU2008580C1 |
Теплонасосная установка | 2023 |
|
RU2808026C1 |
СПОСОБ УПРАВЛЕНИЯ ПРОЦЕССОМ ПОЛУЧЕНИЯ КАПСУЛИРОВАННЫХ ФЕРМЕНТНЫХ ПРЕПАРАТОВ | 2014 |
|
RU2556811C1 |
УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ВЛАГИ ИЗ ВОЗДУХА | 1999 |
|
RU2166700C1 |
ХОЛОДИЛЬНАЯ МАШИНА | 2015 |
|
RU2601670C1 |
Способ работы компрессионной холодильной машины и холодильная машина | 1990 |
|
SU1747818A1 |
Регулятор давления в конденсаторе холодильной машины, работающей по парокомпрессионному циклу с воздушным охлаждением конденсатора, выполнен в виде емкости, содержащей неконденсирующийся газ. Емкость соединена со сторонами высокого, между компрессором и конденсатором, и низкого давления холодильной машины трубопроводами с запорными вентилями. Способ регулирования давления в конденсаторе заключается в следующем: для повышения давления в контур циркуляции холодильного агента вводят часть неконденсирующегося газа, а для понижения давления в конденсаторе часть этого газа отбирают из контура циркуляции холодильного агента. Использование изобретения позволит повысить холодопроизводительность и эксплуатационную надежность парокомпрессионной холодильной машины при пониженных температурах охлаждающего воздуха. 2 с. и 2 з.п.ф-лы, 1 ил.
Ужанский В.С | |||
Автоматизация холодильных машин и установок | |||
- М.: Легкая и пищевая промышленность, 1982, с.102-112 | |||
Холодильная установка | 1984 |
|
SU1241040A1 |
Передвижная установка для добычи грунтового материала | 1956 |
|
SU110696A1 |
Устройство для регулирования давления конденсации хладагента в холодильной установке | 1977 |
|
SU652419A1 |
КИРПИЧ | 0 |
|
SU393425A1 |
Авторы
Даты
1999-09-10—Публикация
1997-04-18—Подача