СПОСОБ УСТАНОВКИ ПРИБОРОВ НА ТЕРМОСТАТИРУЕМЫХ ПАНЕЛЯХ Российский патент 1999 года по МПК H01L23/34 H01L23/40 H05K7/14 H05K7/00 

Описание патента на изобретение RU2142174C1

Изобретение относится к области приборостроения, в частности к способу установки приборов на панелях в космических аппаратах.

Известен способ установки приборов электронной техники на теплопроводящую кремнийорганическую пасту 131-179, разработанную ГНЦ ГНИИХТЭОС, г. Москва (ТУ 6-02-1-342-86) "Паста кремнийорганическая теплопроводная 131-179", путем нанесения этой пасты на поверхность панели и прижима прибора к поверхности панели.

Недостатком этого способа является недолговечность работы подобных конструкций (не более 1-3 лет) в условиях космоса. Кроме того, достаточно дорогие наполнители пасты (нитрид алюминия, нитрид бора) существенно ее утяжеляют.

Наиболее близким по технической сущности к предлагаемому решению является способ установки приборов на установочных панелях, включающий соединение установочной панели с контактирующей поверхностью прибора. (Конструкция и проектирование космических летательных аппаратов, ред. Е.В.Сафронов, М.: Машиностроение, 1986 г.).

Недостатком данного способа установки приборов является уменьшение ресурса приборов из-за недостаточного теплоотвода.

Задачей изобретения является увеличение ресурса приборов вследствие увеличения теплоотвода и уменьшения теплопритоков к приборам, увеличение коррозионной стойкости.

Сущность изобретения заключается в том, что при установке приборов на установочных панелях, включающей соединение установочной панели с контактирующей поверхностью прибора, на контактирующую поверхность прибора и/или панели наносят теплопроводный слой, а в качестве теплопроводного слоя используют низкоплотный терморасширенный графит, а соединение контактирующей поверхности прибора к установочной панели производят путем припрессовывания. Терморасширенный графит предварительно нагревают в нейтральной среде до температуры 950-1050oC, предварительно подвергают вакуумированию под давлением 10-2 - 10-3 мм рт.ст..

Сопоставительный анализ заявляемого способа с прототипом показывает, что срок службы теплопроводной прокладки увеличивается и в случае применения терморасширенного графита практически неограничен. Ограниченная адгезия графита позволяет демонтировать установочные комплексы приборов на термостатируемых панелях без повреждения поверхностей.

Выбор терморасширенного графита объясняется его низкой плотностью (не более 0,008 г/см3) и тонкодисперсным состоянием, что позволяет использовать его без привлечения дополнительной матрицы.

При этом теплопроводность терморасширенного графита при его сжатии в момент установки прибора на термостатируемую панель увеличивается, так как коэффициент теплопередачи очень чувствителен к состоянию поверхности элементов, а терморасширенный графит позволяет обеспечить надежный тепловой контакт при любом состоянии этих поверхностей.

Предварительная термообработка терморасширенного графита, а также вакуумирование его уменьшает кислотность графита, что позволяет увеличить коррозионную стойкость металлов контактирующих поверхностей.

В технике известно использование гибкого углеродистого материала для изготовления охлаждающего устройства для конструкций, подвергающихся воздействию интенсивного потока непрерывного, прерывистого или импульсного типа путем выполнения в теле конструкции каналов и установки в них труб для циркуляции в них охлаждающей жидкости, причем между внутренней поверхностью каналов и внешней поверхностью труб размещают прокладки, выполненные из гибкого углеродистого материала и сжимают давлением не менее 10 кПа путем расширения соответствующих труб (Патент РФ N 1745138, 1992, МКИ5 F 28 F 21/02). Однако в известном способе терморасширенный графит перед использованием спрессовывают в блоки с плотностью до 20-2000 кг/м3 или прокатывают в лист толщиной 0,1-2,0 мм с плотностью до 1000 кг/м3, что превращает терморасширенный графит в качественно другой материал, использовать который в заявляемом способе нет смысла.

Предлагаемый способ может быть реализован следующим образом.

Пример 1.

На контактную поверхность прибора массой 10 кг и площадью 72,0 х 69,6 см2, выполненную из металлического сплава, наносят терморасширенный графит марки ГТР-10-8, насыпная плотность которого 3 кг/м3, расход материала 40 г/м2, pH водно-ацетоновой вытяжки 5,95. Устанавливают прибор на термостатируемую панель космического аппарата "Ямал" и монтируют прибор к панели. Толщина теплопроводящей прокладки при этом составляла 0,25 мм, а коэффициент теплопередачи 12 кВт м-2К-1.

Пример 2.

Для увеличения коэффициента теплопередачи прибор отсоединяется от панели и на уже нанесенный слой повторно наносится еще один слой терморасширенного графита. Далее по ходу примера 1. Толщина слоя достигает 0,4 мм коэффициент теплопередачи 20 кВт м-2К-1.

Пример 3.

Порошок терморасширенного графита марки ГТР-100-8 с насыпной плотностью 3 кг/м3, pH водно-ацетоновой вытяжки 5,76, термостатируют в нейтральной среде в течение часа при температуре 950oC. Насыпная плотность графита после термообработки уменьшается на 5-10% и составляет 2,7 кг/м3, pH водно-ацетоновой вытяжки 6,5. Далее по ходу примера 1. Толщина слоя достигает 0,25 мм, коэффициент теплопередачи 10 кВт м-2К-1.

Пример 4.

Порошок терморасширенного графита марки ГТР-100-8 с насыпной плотностью 3 кг/м3, pH водно-ацетоновой вытяжки 5,76, вакуумируют под давлением 10-2 мм рт. ст. в течение часа. Насыпная плотность графита после вакуумирования уменьшается на 5-10% и составляет 2,8 кг/м3, pH водно-ацетоновой вытяжки 6,45. Далее по ходу примера 1. Толщина слоя достигает 0,25 мм, коэффициент теплопередачи 10 кВт м-2К-1.

Нагревание до температуры 950oC, также как обработка давлением ниже 10-2 мм рт. ст., может неполностью удалить продукты окисления графита в процессе внедрения серной кислоты в присутствии окислителей (алкильные, карбонильные и карбоксильные функциональные группы) и адсорбированные на поверхности терморасширенного графита вещества, определяющие кислотность терморасширенного графита (pH). Нагревание выше 1050oC и создание более глубокого вакуума, чем 10-3 мм рт. ст. нецелесообразно, так как при этих параметрах pH водно-ацетоновой вытяжки обработанного материала остается постоянным, что свидетельствует о завершении процесса.

Таким образом, использование предлагаемого способа обеспечивает по сравнению с существующим прототипом следующие преимущества:
1. Увеличивает срок службы терморегулирующей прокладки из терморасширенного графита, делая его практически неограниченным.

2. Обеспечивает возможность демонтажа прибора в процессе наземной подготовки без повреждения установочных поверхностей, то есть возможность многоразового использования.

3. Позволяет создавать поверхности любого размера и рельефа.

4. Увеличивает коэффициент теплопередачи.

5. Увеличивает коррозионную стойкость.

Похожие патенты RU2142174C1

название год авторы номер документа
СПОСОБ УСТАНОВКИ ПРИБОРОВ НА ТЕРМОСТАТИРУЕМЫХ ПАНЕЛЯХ 2005
  • Тюльменков Валерий Александрович
  • Захаров Борис Семенович
RU2295173C2
СПОСОБ ИЗГОТОВЛЕНИЯ НИЗКОПЛОТНЫХ МАТЕРИАЛОВ И НИЗКОПЛОТНЫЙ МАТЕРИАЛ 2013
  • Сорокина Наталья Евгеньевна
  • Малахо Артем Петрович
  • Филимонов Станислав Владимирович
  • Павлов Александр Алексеевич
  • Авдеев Виктор Васильевич
RU2525488C1
СПОСОБ УСТАНОВКИ ТЕПЛОВЫДЕЛЯЮЩИХ ИЗДЕЛИЙ НА ПОВЕРХНОСТИ 1998
  • Воробьева Т.В.
  • Доморацкий А.Н.
RU2132090C1
ВЫСОКОТЕМПЕРАТУРНЫЙ УГЛЕГРАФИТОВЫЙ ТЕПЛОИЗОЛЯЦИОННЫЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2009
  • Сорокина Наталья Евгеньевна
  • Свиридов Александр Афанасьевич
  • Селезнев Анатолий Николаевич
  • Матвеев Андрей Трофимович
  • Авдеев Виктор Васильевич
  • Годунов Игорь Андреевич
  • Ионов Сергей Геннадьевич
RU2398738C1
СПОСОБ РЕАКТОРНЫХ ИСПЫТАНИЙ ТЕРМОЭМИССИОННОЙ СБОРКИ 1997
  • Синявский В.В.
RU2127466C1
СПОСОБ ПЕТЛЕВЫХ РЕАКТОРНЫХ ИСПЫТАНИЙ ТЕРМОЭМИССИОННОЙ СБОРКИ 1998
  • Синявский В.В.
RU2133518C1
ОСНАСТКА ДЛЯ ФОРМОВАНИЯ ИЗДЕЛИЙ ИЗ ПОЛИМЕРНЫХ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ 2014
  • Бабкин Александр Владимирович
  • Эрдни-Горяев Эрдни Михайлович
  • Яблокова Марина Юрьевна
  • Кепман Алексей Валерьевич
  • Авдеев Виктор Васильевич
RU2576303C1
ВЕНТИЛИРУЕМЫЙ ТЕПЛОВЫДЕЛЯЮЩИЙ ЭЛЕМЕНТ ЯДЕРНОГО РЕАКТОРА 1998
  • Корнилов В.А.
RU2133510C1
СОЕДИНИТЕЛЬ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ 1998
  • Сергеев В.И.
  • Троицкий С.Р.
  • Заверяев В.С.
RU2142662C1
УГЛЕРОДНАЯ ТЕПЛОРАСПРЕДЕЛЯЮЩАЯ ПЛИТА ДЛЯ ИЗГОТОВЛЕНИЯ ПОТОЛОЧНЫХ И НАСТЕННЫХ СИСТЕМ НАГРЕВА И КОНДИЦИОНИРОВАНИЯ 2018
  • Иванов Андрей Владимирович
  • Максимова Наталья Владимировна
  • Шорникова Ольга Николаевна
  • Филимонов Станислав Владимирович
  • Малахо Артем Петрович
  • Авдеев Виктор Васильевич
RU2702431C1

Реферат патента 1999 года СПОСОБ УСТАНОВКИ ПРИБОРОВ НА ТЕРМОСТАТИРУЕМЫХ ПАНЕЛЯХ

Изобретение относится к области приборостроения, в частности к способу установки приборов на панелях в космических аппаратах. Сущность изобретения состоит в том, что приборы устанавливают на термостатируемых панелях путем нанесения на контактирующую поверхность прибора и/или панели теплопроводного слоя, выполненного из низкоплотного терморасширенного графита, и прижимают прибор к термостатируемой панели, причем терморасширенный графит перед использованием предварительно нагревают в инертной среде до 950-1050°С и подвергают вакуумированию при давлении 10-2 - 10-3 мм рт. ст. Использование предлагаемого способа обеспечивает увеличение срока службы терморегулирующей прокладки из терморасширенного графита, делая его практически неограниченным, возможность демонтажа прибора в процессе наземной подготовки без повреждения установочных поверхностей, то есть возможность многоразового использования, позволяет создавать поверхности любого размера и рельефа, увеличивает коэффициент теплопередачи, увеличивает коррозионную стойкость. 2 з.п. ф-лы.

Формула изобретения RU 2 142 174 C1

1. Способ установки приборов на установочных панелях, включающий соединение установочной панели с контактирующей поверхностью прибора, отличающийся тем, что наносят теплопроводящий слой на контактирующую поверхность прибора и/или панели, при этом в качестве теплопроводящего слоя использован низкоплотный терморасширенный графит, затем припрессовывают прибор к установочной панели. 2. Способ по п.1, отличающийся тем, что терморасширенный графит предварительно нагревают в нейтральной среде до температуры 950 - 1050oС. 3. Способ по п.2, отличающийся тем, что терморасширенный графит предварительно подвергают вакуумированию под давлением 10-2 - 10-3 мм рт.ст.

Документы, цитированные в отчете о поиске Патент 1999 года RU2142174C1

Конструкция и проектирование космических летательных аппаратов
/Под ред.Е.В.Сафронова
- М.: Машиностроение, 1986
Способ получения продукта конденсации бетанафтола с формальдегидом 1923
  • Лотарев Б.М.
SU131A1
Буклер В.О
и др
Монтаж радиоаппаратуры
- Издание второе, - М.-А.: 1962, с.53, 224
Способ изготовления охлаждающего устройства 1988
  • Мишель Кулон
  • Робер Фарон
  • Даниель Бессон
SU1745138A3
Абсорбент для хроматографии 1978
  • Марьясин Илья Лазаревич
  • Антонов Александр Николаевич
  • Киселев Андрей Владимирович
  • Ковалева Нина Васильевна
  • Авгуль Наталья Николаевна
  • Воробьева Лариса Дмитриевна
SU768416A1
US 5019948 A, 28.05.91
US 5038253 A, 06.08.91
US 5105339 A, 14.04.92
ПОПЛАВКОВЫЙ ИСПОЛНИТЕЛЬНЫЙ МЕХАНИЗМ 0
SU217161A1

RU 2 142 174 C1

Авторы

Ионов С.Г.

Лапин Е.А.

Авдеев В.В.

Доморацкий А.Н.

Тихомирова И.П.

Гулиш О.К.

Даты

1999-11-27Публикация

1998-01-14Подача