Изобретение относится к области энергомашиностроения, в частности к турбокомпрессорным агрегатам для производства сжатого воздуха или получения вакуума.
Известны турбокомпрессорные агрегаты (ТКА), выполненные на базе авиационных двигателей и их узлов.
Известен ТКА [1] , содержащий компрессор, турбину с входом и выходом, привод, выполненный в виде авиационного газотурбинного двигателя. Недостатком данного ТКА является получение сжатого воздуха с недостаточно большим давлением.
Известен также ТКА [2], который содержит компрессор, турбину, с входом и выходом, привод, выполненный в виде авиационного газотурбинного двигателя, выход которого соединен с входом турбины. Недостатком данной установки является низкое давление получаемого воздуха из-за малой мощности турбины и низкий КПД установки.
Наиболее близким по технической сущности и достигаемому результату к заявляемым ТКА является турбокомпрессорный агрегат [3], содержащий компрессор, турбину, с входом и выходом, привод, выполненный в виде авиационного газотурбинного двигателя, выход которого связан с входом турбины.
Недостатком прототипа является использование в качестве привода только одноконтурных газотурбинных двигателей. При применении в качестве привода двухконтурных двигателей, конвертированных в одноконтурные, требуется большая их доработка: обрезание лопаток компрессора вентиляторного контура по высоте с изготовлением нового корпуса и демонтажем последних ступеней турбины.
Задачей, на решение которой направлено заявляемое изобретение, является расширение функциональных возможностей, за счет использования двухконтурных авиационных двигателей, повышение общего КПД, снижение затрат на проектирование и изготовление.
Поставленная задача решается тем, что в турбокомпрессорном агрегате, содержащем компрессор, турбину с входом и выходом, привод, выполненный в виде авиационного газотурбинного двигателя, выход которого связан с входом турбины, в отличие от прототипа привод выполнен в виде двухконтурного авиационного двигателя, выход первого (внутреннего) контура которого связан с входом турбины и дополнительно содержит трубопровод, который подсоединен к входу двигателя в зоне второго (внешнего) контура и к выходу турбины, причем трубопровод снабжен перепускным устройством.
Существо устройства поясняется чертежом. На чертеже представлена схема предлагаемого устройства. Турбокомпрессорный агрегат содержит компрессор 1, турбину 2, с входом 3 и выходом 4, привод, выполненный в виде двухконтурного авиационного двигателя 5 с выходом 6, дополнительного трубопровода 7, который подсоединен к входу 8 двигателя 5 в зоне второго контура 9, и перепускное устройство 10, которым снабжен трубопровод 7.
Повышение общего КПД и параметров вырабатываемого воздуха, по сравнению с [3] , достигается за счет существенного увеличения мощности турбины. При работе установки происходит отсос газов из-за турбины, повышается перепад давления на турбине, то есть увеличивается степень понижения полного давления в турбине - π
Работа устройства осуществляется следующим образом.
После запуска двигателя 5 и выхода его на рабочий режим, продукты сгорания (первого контура) поступают на вход 3 турбины 2, приводящей во вращение компрессор 1, который сжимает атмосферный воздух. Одновременно с запуском двигателя 5 газы, после выхода 4 турбины 2, через трубопровод 7 попадают во вход 8 двигателя 5 в зоне второго контура 9, то есть отсасываются и выбрасываются в атмосферу. При этом за турбиной 2 происходит разрежение (когда расход рабочего тела через второй контур превышает расход рабочего тела через первый контур, а двухконтурные двигатели в основном такие), что увеличивает перепад давлений на турбине 2, который в свою очередь приводит к увеличению мощности турбины, увеличению оборотов ротора турбокомпрессора, то есть к повышению параметров установки, или увеличение мощности турбины дает возможность уменьшать обороты привода, то есть перейти к более экономичным параметрам. При этом производительность остается прежней, поскольку обороты турбокомпрессора регулируются выходными параметрами привода. Перепускное устройство 10 обеспечивает перепуск атмосферного воздуха в трубопровод 7, что дает возможность регулировать величину перепада давления на турбине π
Таким образом, нами предложен турбокомпрессорный агрегат, где в качестве привода турбины используются двухконтурные газотурбинные авиационные двигатели без доработок (конвертирования). При этом достигается существенное снижение затрат на конвертирование установки, возможность повышения параметров вырабатываемого воздуха или получение тех же параметров за счет снижения параметров привода, что приводит к увеличению КПД установки и продлению ресурса.
Источники информации
1. А.М.Бикбулатов, Ю.М.Зарипов, А.А.Култыгин. Использование авиационного ГТД как модуля эксгаустерной системы мощного технологического газоразрядного лазера. - "Авиационная техника". - КАИ:ИВУЗ N 1/1998 г.,
2. ВИМИ. Наземное применение авиадвигателей в народном хозяйстве. Выпуск 1. - М.: 1975 г., с. 191 - 193.
3. А.С. СССР N 265513 МКИ6 G 01 M 15/00 от 18.05.56 г.
4. С.М.Шляхтенко. Теория и расчет воздушно-реактивных двигателей. - М.: Машиностроение, 1987, с. 568.
название | год | авторы | номер документа |
---|---|---|---|
ЭКСГАУСТЕРНАЯ УСТАНОВКА | 2001 |
|
RU2184876C1 |
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ ГАЗА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ | 1990 |
|
RU2066854C1 |
Силовой привод на базе авиационной газотурбинной установки (АГТУ) | 2019 |
|
RU2727213C1 |
СПОСОБ РАБОТЫ КОМБИНИРОВАННОЙ ГАЗОТУРБИННОЙ УСТАНОВКИ СИСТЕМЫ ГАЗОРАСПРЕДЕЛЕНИЯ И КОМБИНИРОВАННАЯ ГАЗОТУРБИННАЯ УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2000 |
|
RU2199020C2 |
Способ конвертирования двух авиационных двигателей в компрессорную установку | 1989 |
|
SU1726812A1 |
УСТРОЙСТВО И СПОСОБ (ВАРИАНТЫ) ДЛЯ СТАБИЛИЗАЦИИ ПЛАМЕНИ В ФОРСАЖНОЙ КАМЕРЕ ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ | 2009 |
|
RU2403422C1 |
СИСТЕМА АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ ЭНЕРГЕТИЧЕСКОЙ УСТАНОВКОЙ | 2001 |
|
RU2204044C2 |
ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ | 1988 |
|
RU2029117C1 |
ДВИГАТЕЛЬ | 1992 |
|
RU2066777C1 |
СИЛОВАЯ УСТАНОВКА | 2014 |
|
RU2578760C2 |
Изобретение относится к области энергомашиностроения, в частности к турбокомпрессорным агрегатам для производства сжатого воздуха или получения вакуума. В турбокомпрессорном агрегате, содержащем компрессор, турбину с входом и выходом, привод выполнен в виде двухконтурного авиационного газотурбинного двигателя. Выход двигателя связан со входом турбины. Выход внутреннего контура двигателя связан с входом турбины и дополнительно содержит трубопровод, который подсоединен ко входу двигателя в зоне внешнего контура и к выходу турбины. Трубопровод снабжен перепускным устройством. Использование изобретения позволяет расширить функциональные возможности агрегата за счет использования двухконтурного авиационного двигателя, повысить общий КПД и снизить затраты на проектирование и изготовление. 1 ил.
Турбокомпрессорный агрегат, содержащий компрессор, турбину с входом и выходом, привод, выполненный в виде авиационного газотурбинного двигателя, выход которого связан со входом турбины, отличающийся тем, что двигатель выполнен двухконтурным, с входом турбины связан выход внутреннего контура, а агрегат дополнительно снабжен трубопроводом, который подсоединен к входу двигателя в зоне внешнего контура и к выходу турбины, причем трубопровод снабжен перепускным устройством.
СХЕМА УСТАНОВКИ ДЛЯ ИСПЫТАНИЯ АВИАЦИОННЫХ | 0 |
|
SU265513A1 |
Газотурбинная установка | 1988 |
|
SU1652635A1 |
ТОРЦОВОЕ УПЛОТНЕНИЕ | 1999 |
|
RU2170866C1 |
СПОСОБ РЕГИСТРАЦИИ И СОХРАНЕНИЯ ПАРАМЕТРОВ ВЗРЫВА МЕТАНОПЫЛЕВОЗДУШНОЙ СМЕСИ В ГОРНЫХ ВЫРАБОТКАХ И УСТРОЙСТВО "ЧЕРНЫЙ ЯЩИК" ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ) | 2013 |
|
RU2537308C2 |
Полимерная композиция | 1988 |
|
SU1512993A1 |
СКВАЖИННЫЙ ИНСТРУМЕНТ ДЛЯ ЦИРКУЛЯЦИИ ТЕКУЧЕЙ СРЕДЫ В СТВОЛЕ СКВАЖИНЫ, СИСТЕМА ЦИРКУЛЯЦИИ ТЕКУЧЕЙ СРЕДЫ В СТВОЛЕ СКВАЖИНЫ И СПОСОБ ЦИРКУЛЯЦИИ ТЕКУЧЕЙ СРЕДЫ В СТВОЛЕ СКВАЖИНЫ (ВАРИАНТЫ) | 2008 |
|
RU2440482C1 |
Авторы
Даты
2000-03-27—Публикация
1998-04-21—Подача