Изобретение относится к технической физике, в частности к теплофизическим измерениям.
Существует импульсный способ определения теплофизических характеристик материалов (ТФХ), состоящий в импульсном тепловом воздействии по прямой линии на поверхность образца и регистрации момента времени, когда интегральное во времени значение температуры с момента подачи теплового импульса до момента наступления максимума температуры в контролируемой точке станет равной интегральной во времени температуре в той же точке после наступления максимума температуры Tmax (авт. св. СССР N 1201742, кл. G 01 N 25/18, 1985).
Недостатком этого способа является значительная погрешность определения наступления максимума и величины температуры Tmax.
Известен также способ наиболее близкий к данному техническому решению определения ТФХ, заключающийся в следующем: при использовании двух теплоприемников определяют интервал времени от момента подачи первого теплового импульса от линейного источника тепла до момента времени, когда температура в точках расположения датчиков станет равной ее первоначальному значению, устанавливают минимальную частоту следования тепловых импульсов и начинают ее увеличивать в соответствии с известной зависимостью. В точках расположения датчиков регистрируют такую частоту следования тепловых импульсов, при которой устанавливаются значения избыточных, наперед заданных температур. Установившееся значение температуры достигается в точке расположения датчика тогда, когда очередной тепловой импульс не изменяет температуру в этой точке. При этом производится замена исходной функции двумя членами ряда Маклорена (авт. св. СССР N 1402892, кл. G 01 N 25/18, 1986).
Недостатками этого способа являются значительное энергопотребление источником тепла и возникающая погрешность в силу произведенной замены исходной функции.
Для определения погрешности способа-прототипа на персональном компьютере IBM 486 производилось машинное моделирование процессов измерения температуры в точке расположения датчика температуры. Процесс распространения тепла на теплоизолированной от окружающей среды поверхности полубесконечного в тепловом отношении тела описывается выражением вида:
где Q - мощность источника тепла;
F - частота следования импульсов;
a - коэффициент температуропроводности;
λ - коэффициент теплопроводности;
R - расстояние между источником тепла и датчиком;
k - порядковый номер следования тепловых импульсов.
Разложение этой функции в ряд Маклорена и использование его двух членов дают выражение вида:
При расчете избыточных температур для исходных величин Q = 1 Дж; F = 1 Гц; a = 10-5 м2/с; λ = 1 Вт/м•K; R = 10-3 м погрешность, возникающая в результате произведенной замены, составляет 10,91%. Для Q = 1 Дж; F = 1 Гц; a = 5•10-6 м2/с; λ = 1 Вт/м•K; R = 10-3 м погрешность уже составляет 145,8%.
Техническим результатом изобретения является - повышение точности измерения ТФХ материалов.
Сущность изобретения заключается в следующем: на теплоизолированной поверхности исследуемого материала помещают точечный импульсный источник тепла, выделяющий количество тепла, равное Q. На расстоянии R1 и R2 от источника тепла располагают два термодатчика (термопары). Определение ТФХ материала осуществляют путем воздействия последовательностью тепловых импульсов с периодом повторения τ от точечного источника тепла до тех пор, пока в точках расположения термодатчиков не установятся избыточные температуры T1 и T2, значения которых фиксируют. Установившееся значение температуры в точке контроля достигается тогда, когда очередной тепловой импульс не изменяет температуры в этой точке.
По определенным значениям избыточных температур T1 и T2 искомые ТФХ исследуемого материала рассчитывают по формулам:
где
a - коэффициент температуропроводности;
τ - период повторения импульсов;
R1, R2 - расстояние между источником тепла и соответствующими термодатчиками;
T1, T2 - избыточные температуры;
λ - коэффициент теплопроводности;
Q - количество тепла, выделяемого точечным источником тепла;
k - порядковый номер следования тепловых импульсов;
nmax - количество тепловых импульсов, воздействующих на исследуемый материал до момента установления избыточных температур.
Приведенные формулы получают на основании следующих рассуждений. Процесс распространения тепла на теплоизолированной от окружающей среды поверхности полубесконечного в тепловом отношении тела при воздействии n тепловых импульсов с периодом повторения τ от точечного источника тепла в момент подачи очередного теплового импульса описывается выражением вида:
Воспользовавшись разложением (3) в ряд Маклорена:
и взяв первые два члена ряда, установившееся значение температуры в точке расположения датчика будет определяться выражениями:
Взяв отношение выражений (4) и (5), получают формулу для определения коэффициента температуропроводности (1), подставив найденное значение коэффициента температуропроводности в выражение (4), получают формулу для определения коэффициента теплопроводности (2).
На фиг. 1 показана схема реализации предлагаемого способа. На теплоизолированной поверхности исследуемого материала 1 помещают точечный импульсный источник тепла 2, выделяющий количество тепла, равное Q. На расстоянии R1 и R2 от источника тепла располагают два термодатчика (термопары) 3 и 4. Определение ТФХ материала осуществляют путем воздействия последовательностью тепловых импульсов с периодом повторения τ от точечного источника тепла 2 до тех пор, пока в точках расположения термодатчиков 3 и 4 не установятся избыточные температуры T1 и T2, значения которых фиксируют. На фиг. 2 приведены измеренные дискретно во времени значения температуры.
Для предлагаемого способа на персональном компьютере IBM 486 производилось машинное моделирование процессов измерения температуры в точке расположения термодатчика. При расчете избыточных температур для исходных величин Q = 1 Дж; τ = 1 с; a = 10-5 м2/с; λ = 1 Вт/м•K; R = 10-3 м погрешность, возникающая в результате произведенной замены, составляет 0,014%. Для Q = 1 Дж; F = 1 Гц; a = 5•10-6 м2/с; λ = 1 Вт/м•K; R = 10-3 м погрешность составляет 1,48%.
Применение предлагаемого способа позволяет повысить точность измерения ТФХ материалов, уменьшить энергопотребление источником тепла.
Способ используется для неразрушающего контроля теплофизических характеристик (ТФХ) материалов с использованием точечного источника тепла. На теплоизолированной поверхности исследуемого материала помещают точечный импульсный источник тепла , а на соответствующих расстояниях от источника тепла располагают два термодатчика. Для определения ТФХ материала осуществляют воздействие последовательностью тепловых импульсов с периодом повторения τ от точечного источника тепла, при этом достигают избыточные температуры, значения которых фиксируют. Обеспечено повышение точности измерения ТФХ материалов и уменьшение энергопотребления. 2 ил.
Способ неразрушающего контроля теплофизических характеристик материалов, заключающийся в использовании импульсного нагрева поверхности теплоизолированного исследуемого материала и измерении температуры термодатчиками в двух точках контроля, отличающийся тем, что применяют точечный источник тепла, с помощью которого воздействуют на исследуемый материал так, что в точках расположения термодатчиков достигают избыточные температуры T1 и T2, а искомые теплофизические характеристики материалов рассчитывают по формулам
где
а - коэффициент температуропроводности;
τ - период повторения импульсов;
R1, R2 - расстояние между источником тепла и соответствующими термодатчиками;
T1 и T2 - избыточные температуры;
λ - коэффициент теплопроводности;
Q - количество тепла, выделяемого точечным источником тепла;
к - порядковый номер следования тепловых импульсов;
nmax - количество тепловых импульсов, воздействующих на исследуемый материал до момента установления избыточных температур.
Способ неразрушающего контроля теплофизических характеристик материалов и устройство для его осуществления | 1986 |
|
SU1402892A1 |
Способ неразрушающего контроля теплофизических характеристик материалов и устройство для его осуществления | 1984 |
|
SU1201742A1 |
СПОСОБ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ ТЕПЛОФИЗИЧЕСКИХ ХАРАКТЕРИСТИК МАТЕРИАЛОВ | 1993 |
|
RU2084879C1 |
US 5005985 A, 09.04.1991 | |||
Способ получения фосфорнокислотного катионита | 1982 |
|
SU1080435A1 |
Авторы
Даты
2000-05-20—Публикация
1996-10-08—Подача