УСТРОЙСТВО ОХЛАЖДЕНИЯ ЯДЕРНОГО РЕАКТОРА Российский патент 2000 года по МПК G21C15/18 

Описание патента на изобретение RU2150757C1

Изобретение относится к атомной энергетике и может быть использовано для аварийного расхолаживания ядерных реакторов при разрыве трубопроводов, подводящих жидкий охладитель в реактор.

Известно устройство аварийного охлаждения реактора [1], включающее трубопровод подачи охлаждающей воды в сосуд и через дроссель в парогенератор, отводящий тепло из реактора. Давление в парогенераторе и сосуде уравновешивается. При этом подача воды из сосуда может регулироваться дросселем. При снижении расхода в трубопроводе подачи питательной воды, вода из сосуда через дроссель должна поступать в парогенератор. Недостатком устройства является то, что при разрыве питающего трубопровода вода из сосуда и парогенератора потечет в разрыв, снижая уровень воды в парогенераторе. Кроме того, при максимальной аварии с разрывом трубопровода первого контура циркуляции теплоносителя, последний будет вытекать в разрыв, тем самым отвод тепла от реактора станет невозможным.

Известно также устройство аварийного охлаждения реактора [2], взятое за прототип, включающее трубопровод подачи теплоносителя сверху в активную зону реактора, трубопровод отвода горячего теплоносителя, расположенный выше активной зоны реактора, емкость хранения аварийного запаса воды, связанную с местом подачи теплоносителя в активную зону реактора и с трубопроводом отвода горячего теплоносителя с помощью отсечных клапанов с приводами и насоса.

При аварии со значительным разрывом трубопровода подачи теплоносителя в реактор на привод клапана, соединяющего емкость с аварийным запасом воды и место подачи теплоносителя в активную зону, подается сигнал на закрытие клапана, а на привод клапана, соединяющего емкость с трубопроводом отвода горячего теплоносителя, подается сигнал на открытие. Включается насос, который должен подать воду из емкости через трубопровод отвода горячего теплоносителя в активную зону в направлении, обратном обычному току теплоносителя. Недостатком устройства является то, что требуется время, чтобы определить место разрыва и включить приводы клапанов и насоса. За это время активная зона может остаться без теплоносителя и разогреться до такой температуры, что последующий впрыск воды из емкости приведет к термическим напряжениям, которые могут разрушить компоненты активной зоны, выходу радиоактивных продуктов деления, что усугубит последствия аварии. Кроме того, отказ или задержка срабатывания любого из исполнительных органов устройства сделают устройство неработоспособным. Так, задержка включения насоса или открытия клапана подачи воды из емкости в активную зону могут привести к тому, что теплоноситель в активной зоне испарится и возрастающее за счет остаточного тепловыделения давление образовавшегося пара воспрепятствует подаче воды из емкости в активную зону, что приведет к дальнейшему перегреву тепловыделяющих элементов.

Задачей изобретения является увеличение быстродействия и надежности включения аварийного охлаждения реактора при разрыве трубопроводов подачи охлаждающей воды в реактор.

Поставленная задача решается тем, что в устройстве охлаждения ядерного реактора, включающем трубопроводы подачи охлаждающей воды в реактор, трубы отвода воды из реактора с присоединенными к ним емкостями для хранения аварийного запаса воды под давлением, систему подпитки емкостей водой, в трубах отвода воды из реактора установлены дросселирующие клапаны, в затворах которых выполнены проходные отверстия для обеспечения расхода обратного тока воды в реакторе с возможностью его кратковременного охлаждения при разрыве трубопроводов подачи охлаждающей воды в реактор, при этом часть объема емкостей занимает сжатый газ, давление которого поддерживается компрессорами.

Размеры проходных отверстий в затворах дросселирующих клапанов выбирают в зависимости от конструктивных и физико-технических особенностей конкретного ядерного реактора. Они определяются расчетным путем, проверяются и уточняются в ходе стендовых и натурных испытаний.

Так, например, на уран-графитовых ядерных реакторах с вертикальными технологическими каналами, загружаемыми цилиндрическими тепловыделяющими элементами, охлаждаемыми водой, при расчетах во внимание принимают максимальный уровень мощности реактора, определяющий температуру его активной зоны, габаритные размеры активной зоны, общую массу графитовой кладки, материал, количество и внутренний диаметр технологических труб рабочих каналов, загруженных заданным количеством твэлов, внешний диаметр последних, величину рабочего гидравлического давления в каналах и давления сжатого газа в емкостях с аварийным запасом воды.

Сущность предложенной конструкции устройства охлаждения реактора представлена на фиг. 1 - общая схема охлаждения, на фиг. 2 и 3 - конструкция дросселирующего клапана.

Трубопровод (1) подает охлаждающую воду в реактор (2), из которого вода поступает в трубы отвода воды (3), гидравлически связанные с емкостями (4), содержащими аварийный запас воды (5). Часть объема емкостей занимает сжатый газ (6), давление которого поддерживается компрессорами (7). Потери запаса воды в емкостях могут быть компенсированы через водоводы подпитки (8) насосами (9).

В трубах отвода воды из реактора установлены дросселирующие клапаны (10), положения которых приведены на фиг. 2 - для нормального состояния устройства охлаждения и на фиг.3 - для аварийного состояния. Клапан состоит из корпуса (11) и затвора (12) с проходным осевым отверстием (13).

Трубы отвода воды соединяются общим коллектором (14), из которого вода подается через задвижку (15) в теплообменник (16).

Устройство охлаждения реактора работает следующим образом. В штатном эксплуатационном режиме вода подается в реактор, находящийся на заданном уровне мощности, снимает тепло, выделяемое в его активной зоне, и охлаждается в теплообменнике (16). При этом напор на обратных клапанах (10) поддерживает их затворы в открытом состоянии (фиг.2), обеспечивая тем самым относительно высокую пропускную способность клапанов. При аварийном разрыве трубопроводов подачи воды давление на входе в реактор резко снижается до значений, близких к атмосферному давлению, и реактор заглушается поглощающими стержнями аварийной защиты, а направление гидравлической силы, действующей на затворы клапанов, меняется на противоположное, и затворы закрываются (фиг. 3). Однако при этом возникает обратный ток воды через отверстия (13) в затворах (12), обусловленный наличием избыточного давления в аварийных емкостях.

Поскольку изменение направления напора воды при аварийном разрыве трубопроводов ее подачи в реактор происходит с большой скоростью распространения, то и включение аварийного охлаждения происходит практически за время не более одной секунды, причем пассивно, т.е. в отличие от прототипа независимо от действия оператора по включению оборудования для аварийного охлаждения и инерционности срабатывания этого оборудования. Таким образом, быстродействие включения системы аварийного охлаждения и надежности этого включения существенно повышается. Объем воды (5) и давление газа (6) в емкостях для хранения аварийного запаса достаточны для пассивного охлаждения аварийно остановленного реактора в течение нескольких минут. За это время происходит включение аварийной подпитки емкости (4) насосами (9) и активная зона реактора продолжает охлаждаться аналогично прототипу.

Источники информации
1. Патент США 4239596, кл. G 21 C 15/18, 16.12.80.

2. Заявка Великобритании 2114802, кл. G 21 C 15/18, 24.08.83.

Похожие патенты RU2150757C1

название год авторы номер документа
УСТРОЙСТВО АВАРИЙНОГО ОХЛАЖДЕНИЯ ЯДЕРНОГО РЕАКТОРА 2002
  • Гаврилов П.М.
  • Дмитриев А.М.
  • Калугин А.К.
  • Ларин В.К.
  • Мещеряков В.Н.
  • Петрунин В.В.
  • Сорокин А.И.
  • Цыганов А.А.
RU2231144C2
СПОСОБ ЭКСПЛУАТАЦИИ КОНТУРА ОХЛАЖДЕНИЯ ЯДЕРНОГО РЕАКТОРА 2003
  • Гаврилов П.М.
  • Мещеряков В.Н.
  • Шидловский В.В.
  • Цыганов А.А.
  • Фатин В.И.
RU2243602C1
АВАРИЙНАЯ СИСТЕМА ОХЛАЖДЕНИЯ ЯДЕРНОГО РЕАКТОРА 2016
  • Войтюк Валерий Викторович
RU2650504C2
СПОСОБ И СИСТЕМА ПРИВЕДЕНИЯ АТОМНОЙ ЭЛЕКТРОСТАНЦИИ В БЕЗОПАСНОЕ СОСТОЯНИЕ ПОСЛЕ ЭКСТРЕМАЛЬНОГО ВОЗДЕЙСТВИЯ 2018
  • Безлепкин Владимир Викторович
  • Гаврилов Максим Владимирович
  • Третьяков Евгений Александрович
  • Козлов Вячеслав Борисович
  • Образцов Евгений Павлович
  • Мезенин Евгений Игоревич
  • Ширванянц Антон Эдуардович
  • Альтбреген Дарья Робертовна
  • Носанкова Лайне Вяйновна
  • Егоров Евгений Юрьевич
  • Лукина Анжела Васильевна
  • Вибе Дмитрий Яковлевич
RU2697652C1
СПОСОБ ПАССИВНОГО РАСХОЛАЖИВАНИЯ РЕАКТОРНОЙ УСТАНОВКИ С РЕАКТОРОМ ПОД ДАВЛЕНИЕМ 2021
  • Узиков Виталий Алексеевич
  • Узикова Ирина Витальевна
  • Сулейманов Ильдар Радикович
RU2776024C1
ТОПЛИВНАЯ СБОРКА ЯДЕРНОГО РЕАКТОРА 1997
  • Гаврилов П.М.
  • Дмитриев А.М.
  • Хренников Н.Н.
  • Цыганов А.А.
  • Фатин В.И.
RU2120672C1
ЯДЕРНАЯ ЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА 2006
  • Безносов Александр Викторович
  • Молодцов Антон Анатольевич
  • Бокова Татьяна Александровна
  • Новожилова Ольга Олеговна
RU2325717C1
ТОПЛИВНОЕ УСТРОЙСТВО ЯДЕРНОГО РЕАКТОРА 1994
  • Гаврилов П.М.
  • Цыганов А.А.
  • Дмитриев А.М.
RU2069897C1
ТОПЛИВНАЯ СБОРКА ЯДЕРНОГО РЕАКТОРА 1993
  • Дмитриев А.М.
  • Цыганов А.А.
  • Гаврилов П.М.
  • Кильтер В.А.
  • Фатин В.И.
  • Хренников Н.Н.
RU2100851C1
БАССЕЙНОВЫЙ ЯДЕРНЫЙ РЕАКТОР И СПОСОБ АВАРИЙНОГО ОХЛАЖДЕНИЯ БАССЕЙНОВОГО ЯДЕРНОГО РЕАКТОРА 1988
  • Доронин А.С.
  • Зверев С.А.
  • Иванов В.В.
  • Романов С.Е.
SU1648209A1

Иллюстрации к изобретению RU 2 150 757 C1

Реферат патента 2000 года УСТРОЙСТВО ОХЛАЖДЕНИЯ ЯДЕРНОГО РЕАКТОРА

Изобретение может быть использовано в ядерных реакторах, например канальных уран-графитовых реакторах. Устройство включает трубопроводы подачи охлаждающей воды в реактор, трубы отвода воды из реактора с присоединенными к ним емкостями для хранения аварийного запаса воды под давлением, систему подпитки емкостей водой. В трубах отвода воды из реактора установлены дросселирующие клапаны. В затворах клапанов выполнены проходные отверстия для обеспечения расхода обратного тока воды в реакторе с возможностью его кратковременного охлаждения при разрыве трубопроводов подачи охлаждающей воды в реактор. Часть объема емкостей занимает сжатый газ, давление которого поддерживается компрессорами. Устройство охлаждения, кроме основной своей функции - теплосъема с ядерного реактора, обеспечивает быстродействие и надежность аварийного охлаждения реактора при разрыве его подводящих водородов. 3 ил.

Формула изобретения RU 2 150 757 C1

Устройство охлаждения ядерного реактора, включающее трубопроводы подачи охлаждающей воды в реактор, трубы отвода воды из реактора с присоединенными к ним емкостями для хранения аварийного запаса воды под давлением, систему подпитки емкостей водой, отличающееся тем, что в трубах отвода воды из реактора установлены дросселирующие клапаны, в затворах которых выполнены проходные отверстия для обеспечения расхода обратного тока воды в реакторе с возможностью его кратковременного охлаждения при разрыве трубопроводов подачи охлаждающей воды в реактор, при этом часть объема емкостей занимает сжатый газ, давление которого поддерживается компрессорами.

Документы, цитированные в отчете о поиске Патент 2000 года RU2150757C1

Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
СПОСОБ ПОЛУЧЕНИЯ ПОЛОСЫ ИЗ ЭЛАСТИЧНОГО ГРАФИТА 1995
  • Крылов Владимир Степанович
  • Чернов Сергей Валентинович
  • Крылов Сергей Владимирович
  • Баранов Леонид Иванович
  • Классен Эдгар Яковлевич
  • Сивак Борис Александрович
RU2114802C1
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
СИСТЕМА АВАРИЙНОГО ОХЛАЖДЕНИЯ РЕАКТОРНОЙ УСТАНОВКИ 1992
  • Гершевич Б.А.
  • Безлепкин В.В.
  • Ермолаев В.Ф.
  • Зубков А.А.
  • Маринич А.М.
  • Молчанов А.В.
RU2050025C1
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1
СИСТЕМА ОХЛАЖДЕНИЯ АКТИВНОЙ ЗОНЫ ИССЛЕДОВАТЕЛЬСКОГО ЯДЕРНОГО РЕАКТОРА 1992
  • Бовин А.П.
  • Корнеев А.А.
  • Маслов В.Н.
  • Маркович С.М.
  • Романов М.А.
  • Пугач В.Д.
RU2077744C1
Очаг для массовой варки пищи, выпечки хлеба и кипячения воды 1921
  • Богач Б.И.
SU4A1
US 4239596 A, 16.12.80
Кипятильник для воды 1921
  • Богач Б.И.
SU5A1
Ядерные энергетические установки/Под ред
Доллежаля Н.А.-М.: Энергоатомиздат, 1983, с.20-25.

RU 2 150 757 C1

Авторы

Гаврилов П.М.

Дмитриев А.М.

Лаптев Ф.В.

Романов О.Н.

Фатин В.И.

Цыганов А.А.

Чуканов В.Б.

Даты

2000-06-10Публикация

1998-06-09Подача