БРОНЕБОЙНАЯ ПУЛЯ И СПОСОБ ИЗГОТОВЛЕНИЯ БРОНЕБОЙНЫХ СЕРДЕЧНИКОВ Российский патент 2000 года по МПК F42B12/74 F42B12/06 F42B30/02 C21D9/16 B21K3/00 

Описание патента на изобретение RU2151369C1

Изобретение относится к боеприпасам стрелкового оружия, преимущественно к пистолетным патронам и патронам для автоматического оружия и другого оружия с бронебойными пулями, предназначенным для стрельбы по бронированным целям, а также к производству бронебойных сердечников.

Известна бронебойная пуля, содержащая оболочку, в которой размещен стальной термоупрочненный бронебойный сердечник в рубашке из материала с низкой плотностью (патент РФ N 2018781, МПК6 F 42 B 30/02, 12/06; 30.08.94). Высокие бронепробивные свойства пули данной конструкции обеспечиваются, прежде всего, за счет повышения относительной массы сердечника, достигающей 70% от массы пули. Кроме того, пуля имеет удачную компоновку: оболочка сердечника установлена со стороны хвостовой части пули с выступлением головной части сердечника над торцом оболочки, что исключает затраты энергии сердечника при взаимодействии с броней на пробитие твердой оболочки. Однако выполнение сердечника пули из высокоуглеродистой стали с высокой твердостью при взаимодействии его с броней приводит к отколу хвостовой части, то есть к его разрушению и снижению тем самым бронебойных свойств пули. К тому же выполнение сердечника пули из высокоуглеродистой стали с высокой твердостью усложняет изготовление сердечника с носовым заострением. Изготовление же сердечника с носовым притуплением также существенно снижает его пробивные свойства.

Известна бронебойная пуля, выбранная в качестве прототипа, содержащая оболочку, в которой закреплены рубашка и бронебойный сердечник, установленный с выступанием заостренной головной части за открытый торец оболочки (патент РФ N 2077021, МПК6 F 42 B 30/02, 12/06; 10.04.97).

Несмотря на то, что данная пуля имеет более высокие пробивные свойства, чем предыдущая, за счет заостренной выступающей за оболочку носовой части, однако в ней также возможно разрушение броневого сердечника при взаимодействии его с преградой. К тому же изготовление заостренного сердечника из высокопрочной стали существенно усложняет технологию его изготовления.

Известен способ изготовления стальных бронебойных сердечников, включающий отрубку мерной заготовки, индукционный нагрев полуфабриката до температуры 750 - 780oC, полугорячую штамповку в разъемных штампах с окончательным формированием головной, центральной и хвостовой частей сердечника с выходом припуска металла в кольцевой облой, который удаляют после охлаждения полуфабриката сердечника на воздухе (патент РФ N 2094161, МПК6 B 21 K 3/00, 27.10.97).

К недостаткам данного способа можно отнести то, что для изготовления бронебойного сердечника используется труднодеформируемая инструментальная сталь У10. Это приводит к значительному усложнению технологического процесса штамповки сердечника, а также снижению долговечности дорогостоящих штампов, работающих при повышенных температурах. Кроме того, выбор высокоуглеродистой стали для изготовления сердечника, склонной после упрочняющей термической обработки к трещинообразованию, будет значительно уменьшать бронепробиваемость пули вследствие сколов заостренной носовой части сердечника.

Известен способ изготовления стальных бронебойных сердечников, который выбран в качестве прототипа (патент РФ N 2110353, МПК6 B 21 K 3/00, F 42 B 12/04, 10.05.98). По данному способу бронебойный сердечник изготавливают в несколько переходов, включающих отрубку заготовки в размер, предварительное деформирование методом ротационного обжатия головной части на одном из ее концов, промежуточную химобработку и окончательное формообразование головной и хвостовой частей сердечника одновременной осадкой с выдавливанием головной части и прямым выдавливанием хвостовой части сердечника.

К недостаткам данного способа следует отнести то, что, как и в вышеописанном способе, в качестве исходной заготовки используется труднодеформируемая высокоуглеродистая сталь, существенно усложняющая технологию изготовления бронебойного сердечника. Кроме того, при функционировании бронебойного сердечника из высокоуглеродистых сталей с броней происходит его разрушение путем сколов носовой части, что снижает бронепробивные свойства пули.

Задачей настоящего изобретения является повышение бронебойных свойств пуль и снижение рикошета сердечников, а также повышение производительности процесса и снижение трудоемкости изготовления бронебойных сердечников.

Поставленная задача решается тем, что в пуле, содержащей оболочку, в которой закреплены рубашка и стальной бронебойный сердечник, установленный с выступлением заостренной головной части за открытый торец оболочки, частично перекрывающей головную часть сердечника, сердцевина сердечника имеет структуру троостита твердостью 350 - 380 HB, а внешний слой сердечника на глубину h = (0,1 - 0,3)dсерд выполнен с упрочнением до твердости 55 - 60 HRC, где dсерд - диаметр сердечника пули (мм).

Оптимальная глубина внешнего упрочненного слоя бронебойного сердечника, обеспечивающего максимальное пробитие при сохранении его целостности, определяется по математической зависимости:

где dсерд - диаметр сердечника пули (мм),
β - параметр взаимодействия сердечника с преградой, определяемый из выражения:

где m - масса сердечника (г),
V - скорость взаимодействия сердечника с преградой (м/с),
V* = 5000, скорость дислокационного деформирования сердцевины сердечника, равная скорости звука в сталях (м/с),
Δ - толщина пробиваемой сердечником преграды (мм),
σв - прочность материала преграды (кг/мм2).

При этом носовая часть сердечника может быть выполнена с упрочнением на высоту до 0,42dсерд.

Причем в способе изготовления бронебойных сердечников, включающем отрубку заготовки в размер от стального прутка, формообразование сердечника холодной штамповкой и окончательную термическую обработку сердечника закалкой и отпуском, отрубку производят от стального прутка из легкодеформируемой малоуглеродистой стали. При этом формообразование заостренной головной, центральной и хвостовой частей сердечника производят одновременно, после чего осуществляют упрочнение внешнего слоя бронебойного сердечника путем химико-термической обработки в среде карбюризатора при температуре 900 - 1000oC на глубину h = (0,1 - 0,3)dсерд. Окончательную термическую обработку сердечника осуществляют закалкой и отпуском внешнего слоя сердечника на твердость 55 - 60 HRC и сердцевины сердечника на структуру троостита отпуска твердостью 350 - 380 HB.

Длительность операции химико-термической обработки t бронебойного сердечника в среде карбюризатора определяют по зависимости:

где h - глубина упрочненного внешнего слоя бронебойного сердечника, (мм);
D0 = 3,8•10-11, диффузионная константа процесса насыщения поверхностного слоя стального сердечника углеродом, (см2/с);
T - температура процесса химико-термической обработки стального сердечника, (oC), определяемая по зависимости: T = 870 + 370 • %C, где: %C - исходное содержание углерода в заготовке сердечника до химико-термической обработки;
H = 32000, энергия активации диффузии углерода в поверхностном слое стали при цементации,
R = 1,98, газовая постоянная,
На фиг. 1 показана конструкция пули в разрезе; на фиг. 2 - бронебойный сердечник, на фиг. 3 - схема взаимодействия пули с броней.

Пуля состоит из бронебойного стального сердечника 1 с заостренной головной частью 2, рубашки 3 и оболочки 4, установленной на сердечнике 1 со стороны его хвостовой части. Заостренная головная часть 2 сердечника 1 выступает за открытый передний торец 5 оболочки 4, причем оболочка частично перекрывает головную часть сердечника 1 и может образовывать с сердечником и передним торцом рубашки 3 полость 6.

Материал сердцевины 7 "капсюльного" бронебойного сердечника 1 выполнен со структурой троостита твердостью 350 - 380 HB, внешний слой 8 сердечника 1 выполнен с упрочнением до твердости 55 - 60 HRC на глубину h = (0,1 - 0,3)dсерд, а носовая часть сердечника выполнена с упрочнением на высоту до 0,42dсерд.

В начале взаимодействия пули с броневой преградой 9 заостренная твердая носовая часть 2 сердечника 1 проникает в преграду 9. Благодаря тому, что заостренная носовая часть 2 выполнена с выступлением из оболочки 4, пуля не тратит энергии на ее пробитие. В дальнейшем при начале взаимодействия переднего торца 5 оболочки 4 с преградой 9, благодаря наличию пустоты 6 в головной части пули, оболочка 4 деформируется с потерей устойчивости, легко раскрывается и отделяется от рубашки 3. Разрушение и отделение оболочки 4 происходит с минимальной потерей кинетической энергии сердечника. В дальнейшем сердечник 1 осуществляет проникновение в преграду 9.

Бронебойные свойства заявляемой пули по сравнению с известными повышаются за счет структурной конструкции материала бронебойного сердечника, учитывающей особенность динамического взаимодействия сердечника с жесткой броневой преградой при соударении.

В начальной фазе взаимодействия сердечника 1 с преградой большая часть энергии соударения острой и твердой носовой части 2 сердечника 1 воспринимается пластичной с трооститной структурой сердцевиной 7, предотвращая сколы и трещинообразование в поверхностном твердом слое 8. Однако в условиях неизменного объема сердечника, ограниченного упрочненным твердым поверхностным слоем 8, и при высоких скоростях взаимодействия порядка нескольких сотен метров в секунду, создаются условия для гомогенного зарождения дислокаций в ферритной матрице трооститной сердцевины 7 сердечника 1. При этом происходит "упругий взвод" трооститной структуры сердечника путем аккумулирования энергии взаимодействия в сердцевине сердечника 7 и создание, таким образом, объемно-напряженного состояния, в том числе во внешнем твердом слое 8.

На втором этапе пробивания преграды начинается инерционное проникновение сначала заостренной носовой части сердечника 1 в преграду 9 за счет оттеснения ее материала на периферию и последующее проникновение всего сердечника. Движущей силой этой фазы является упругое последствие аккумулированной на первой фазе взаимодействия системы "сердцевина - упрочненный поверхностный слой" при постоянном "подпоре" кинетической энергии со стороны массы сердечника в средней и задней частях.

Пример.

Для изготовления бронебойного сердечника к пуле типа ПБМ пистолета Макарова калибром 5,7 мм с сердечником (dсерд = 5 мм, от прутка диаметром dпр = 4,9 мм из малоуглеродистой штампуемой стали с содержанием углерода 0,2% и твердостью 130 - 180 HB (например сталь 20Х), отрубали заготовку массой m = 1,7 грамм. На холодно-высадочных штампах в два перехода без подогрева и промежуточных термохимических операций проводили формообразование одновременно заостренной головной, центральной и хвостовой частей сердечника.

Для упрочнения внешнего слоя бронебойного сердечника на заданную глубину до твердости 55 - 60 HRC полученные полуфабрикаты сердечников подвергали химико-термической обработке путем науглероживания в твердом карбюризаторе, например, на основе древесного угля с нормированными добавками карбонатов Ca, Na, Ba. Углеродный потенциал был равен 0,8 %C, а диффузионная константа процесса насыщения поверхностного слоя стального сердечника углеродом равнялась D0 = 3,8•10-11 см2/с.

Температура процесса составляла:
T = 870 + 370 • %С = 870 + 370 • 0,2 = 944oC.

Для обеспечения максимального бронепробития при взаимодействии пули с преградой толщиной Δ равной 5; 8 и 15 мм и с учетом используемого оружия, обеспечивающего взаимодействие сердечника с преградой со скоростями 300; 500 и 800 м/с по зависимости (3) с учетом значений вышеприведенных параметров определялась длительность процесса химико-термической обработки, обеспечивающая оптимальную глубину h упрочненного внешнего слоя. Результаты расчетов приведены в табл. 1.

Одновременно были проведены эксперименты по насыщению углеродом внешней поверхности сердечников из стали 20Х при тех же условиях в течении времени: 1,3; 3,0; 4,7; 5,8 и 8,0 часов. При этом отклонение величин экспериментальных толщин внешнего упрочненного слоя h от расчетных не превышала 18%.

Однако следует отметить, что в заостренной носовой части сердечника, благодаря его форме, глубина науглероживания превышает глубину упрочненного внешнего слоя на его боковой и хвостовой частях. Высота L упрочненной носовой части сердечника достигала величин до 0,42dсерд.

С целью получения твердости внешнего слоя сердечника 55 - 60 HRC и твердости трооститной сердцевины 350 - 380 HB, после цементации проводили закалку сердечника традиционным способом при температуре TAC3 + (30-50)oC, т. е. 830 - 890oC, и последующий отжиг при температуре 200 - 220oC в течении часа.

После изготовления бронебойного сердечника осуществляли сборку пули. Для этого производили запрессовку сердечника 1 с рубашкой 3 со стороны его хвостовой части в оболочку 4. В дальнейшем осуществляли обжим головной части оболочки, с частичным перекрытием головной части 2 сердечника 1. При этом заостренная носовая часть сердечника была выполнена с выступлением за передний торец 5 оболочки 4. Причем обжим головной части оболочки производили таким образом, что между сердечником 1, передним торцом рубашки 3 и внутренней поверхностью оболочки была образована полость 6.

Проводили сопоставительные испытания пуль на бронепробиваемость.

Испытанию подвергали пули типа ПБМ пистолета Макарова, сердечник которых был изготовлен из стали У10 по стандартной технологии, изложенной в прототипе. При этом твердость всего сердечника составляла 60 - 63 HRC.

У предлагаемых пуль сердечник был изготовлен из стали 20Х по заявляемой технологии. Причем, сердцевина сердечника имела структуру троостита твердостью 363 HB, а внешний слой на глубину h = 1,1 мм (h = 0,22dсерд) был выполнен с HRC, равной 59 единиц, заостренная носовая часть сердечника была выполнена с упрочнением на высоту L = 2,1 мм.

Условия испытаний:
Количество патронов в каждой партии испытаний - 30 штук;
Преграда выполнялась из стали Ст. 3 толщинами Δ, равными 5 и 10 мм;
Дистанция выстрела - 10 м;
Начальная скорость пули V, фактически совпадающая со скоростью взаимодействия пули с преградой, составляла 500 и 600 м/с.

Результаты сопоставительных испытаний пуль типа ПБМ и предлагаемых приведены в табл. 2.

Таким образом, применение разработанных пуль со штампованным и цементованным сердечником позволяет:
- повысить процент пробиваемости на 20% для тонких преград и до 40...50% для толстых преград по сравнению с пулями прототипа;
- за счет снижения количества операций штамповки и снижения энергетических затрат на формообразование сердечника, разработанный способ существенно повышает производительность малоотходной технологии производства пуль в массовом их производстве.

Похожие патенты RU2151369C1

название год авторы номер документа
БРОНЕБОЙНАЯ ПУЛЯ 2002
  • Грязев В.П.
  • Волков В.А.
  • Королев В.М.
RU2235276C2
Способ изготовления заготовки стального сердечника для бронебойно-зажигательной пули 2020
  • Иванов Константин Михайлович
  • Игнатенко Виталий Владимирович
  • Винник Петр Михайлович
  • Ремшев Евгений Юрьевич
  • Лобов Василий Александрович
  • Затеруха Екатерина Владимировна
RU2744402C1
БРОНЕБОЙНАЯ ПУЛЯ И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ 1998
  • Грязев В.П.
  • Зеленко В.К.
  • Королев В.М.
  • Шипунов А.Г.
RU2133006C1
БРОНЕБОЙНО-ЗАЖИГАТЕЛЬНО-ТРАССИРУЮЩАЯ ПУЛЯ 1999
  • Вытягов Б.Н.
  • Гаврилов А.М.
  • Емельянов Е.А.
RU2168148C1
БРОНЕБОЙНАЯ ПУЛЯ 1999
  • Добрынин П.Я.
  • Козюрин В.П.
  • Ульянин Н.Я.
  • Некрасов И.О.
  • Бобров В.М.
  • Дворянинов В.Н.
  • Зубачев В.И.
  • Хиникадзе А.В.
  • Щитов В.Н.
RU2150077C1
Бронебойная пуля 2020
  • Семенов Александр Алексеевич
RU2742165C1
БРОНЕБОЙНАЯ ПУЛЯ 1998
  • Бобров В.М.
  • Веронский Д.И.
  • Дворянинов В.Н.
  • Зубачев В.И.
  • Щитов В.Н.
  • Ульянин Н.Я.
RU2133441C1
БРОНЕБОЙНАЯ ПУЛЯ 1998
  • Бобров В.М.
  • Дворянинов В.Н.
  • Николаев В.А.
  • Зубачев В.И.
  • Хиникадзе А.В.
  • Щитов В.Н.
  • Аксенов В.М.
  • Минаев А.Н.
RU2135940C1
БРОНЕБОЙНАЯ ПУЛЯ 2010
  • Фадеев Валерий Сергеевич
  • Конаков Александр Викторович
  • Чигрин Юрий Леонидович
  • Штанов Олег Викторович
  • Ободовский Юрий Васильевич
  • Паладин Николай Михайлович
  • Довгаль Олег Викторович
  • Михеев Владимир Григорьевич
  • Иванов Владимир Николаевич
  • Щитов Виктор Иванович
  • Зубачев Владимир Игоревич
  • Дворянинов Владислав Николаевич
  • Николаев Владимир Александрович
  • Тагунов Виктор Федорович
  • Пугачев Вячеслав Александрович
  • Шпаченко Эдуард Владимирович
RU2438096C1
СПОСОБ ОБРАБОТКИ ПОВЕРХНОСТИ БОЕПРИПАСОВ 2015
  • Шафеев Георгий Айратович
  • Симакин Александр Владимирович
  • Гарнов Сергей Владимирович
  • Родин Павел Иванович
  • Торгун Иван Николаевич
  • Пахомов Вячеслав Павлович
  • Захаров Игорь Юрьевич
  • Ковальчук Алексей Григорьевич
  • Семизоров Дмитрий Юрьевич
  • Багров Алексей Анатольевич
RU2580576C1

Иллюстрации к изобретению RU 2 151 369 C1

Реферат патента 2000 года БРОНЕБОЙНАЯ ПУЛЯ И СПОСОБ ИЗГОТОВЛЕНИЯ БРОНЕБОЙНЫХ СЕРДЕЧНИКОВ

Изобретение относится к боеприпасам стрелкового оружия. Бронебойная пуля содержит оболочку, в которой закреплены рубашка и стальной бронебойный сердечник, установленный с выступанием заостренной головной части за открытый торец оболочки, частично перекрывающей головную часть сердечника. При этом сердцевина сердечника имеет структуру троостита твердостью 350-380 НВ, а внешний слой боковой и хвостовой частей сердечника на глубину h = (0,1-0,3)dсерд выполнен с упрочнением до твердости 55-60 HRC. Способ изготовления бронебойных сердечников включает отрубку заготовки от стального прутка из легкодеформируемой малоуглеродистой стали, формообразование сердечника холодной штамповкой одновременно заостренной головной, центральной и хвостовой частей сердечника, после чего осуществляют упрочнение внешнего слоя бронебойного сердечника путем химико-термической обработки в среде карбюризатора при 900-1000°С на глубину h = (0,1-0,3)dсерд, а окончательную термическую обработку сердечника осуществляют закалкой и отпуском внешнего слоя сердечника на твердость 55-60 HRC и сердцевины сердечника на структуру троостита отпуска твердостью 350-380 НВ. Изобретение позволяет повысить бронебойные свойства пуль и снизить рикошет сердечников, а также повысить производительность процесса. 2 с. и 3 з.п.ф-лы, 2 табл, 3 ил.

Формула изобретения RU 2 151 369 C1

1. Бронебойная пуля, содержащая оболочку, в которой закреплены рубашка и бронебойный сердечник, установленный с выступанием заостренной головной части за открытый торец оболочки, частично перекрывающей головную часть сердечника, отличающаяся тем, что сердечник выполнен стальным, сердцевина сердечника имеет структуру троостита твердостью 350 - 380 НВ, а внешний слой сердечника выполнен с упрочнением до твердости 55 - 60 HRC, причем внешний слой боковой и хвостовой частей сердечника упрочнен на глубину h = (0,1 - 0,3) dсерд, где dсерд - диаметр сердечника. 2. Пуля по п.1, отличающаяся тем, что оптимальная глубина h упрочненного внешнего слоя бронебойного сердечника определяется по зависимости

где dсерд - диаметр сердечника пули, мм;
β - безразмерный параметр взаимодействия сердечника с преградой, определяемый из выражения

где m - масса сердечника, г;
V - скорость взаимодействия сердечника с преградой, м/с;
V* = 5000 - скорость дислокационного деформирования сердцевины сердечника, равная скорости звука в сталях, м/с;
Δ - толщина пробиваемой сердечником преграды, мм;
σв - прочность материала преграды, кг/мм2.
3. Пуля по п.1, отличающаяся тем, что носовая часть сердечника выполнена с упрочнением на высоту до 0,42dсерд. 4. Способ изготовления бронебойных сердечников, включающий отрубку заготовки в размер от стального прутка, формообразование сердечника холодной штамповкой и окончательную термическую обработку сердечника закалкой и отпуском, отличающийся тем, что отрубку производят от стального прутка из легкодеформируемой малоуглеродистой стали, формообразование производят одновременно заостренной головной, центральной и хвостовой частей сердечника, после чего осуществляют упрочнение внешнего слоя бронебойного сердечника путем химико-термической обработки в среде карбюризатора при 900 - 1000oC на глубину h = (0,1 - 0,3)dсерд, а окончательную термическую обработку сердечника осуществляют закалкой и отпуском внешнего слоя сердечника на твердость 55 - 60 HRC и сердцевины сердечника на структуру троостита отпуска твердостью 350 - 380 НВ. 5. Способ по п.4, отличающийся тем, что длительность операции химико-термической обработки бронебойного сердечника в среде карбюризатора определяют по зависимости

где h - глубина упрочненного внешнего слоя бронебойного сердечника, мм;
D0 = 3,8•10-11 - диффузионная константа процесса насыщения поверхностного слоя стального сердечника углеродом, см2/с;
T - температура процесса химико-термической обработки стального сердечника, oC;
H = 32000 - энергия активации диффузии углерода в поверхностном слое стали при цементации,
R = 1,98 - газовая постоянная, з

Документы, цитированные в отчете о поиске Патент 2000 года RU2151369C1

БРОНЕБОЙНАЯ ПУЛЯ 1985
  • Алешечкин Ю.И.
  • Касьянов И.П.
  • Корнилова Е.С.
  • Фролов Ю.З.
RU2077021C1
СПОСОБ ИЗГОТОВЛЕНИЯ СТАЛЬНЫХ БРОНЕБОЙНЫХ СЕРДЕЧНИКОВ 1997
  • Лялин В.М.
  • Токмаков В.С.
  • Юдин Д.И.
  • Павлов А.Ю.
  • Гельфонд В.Л.
  • Котляров В.С.
  • Журавлев Г.М.
  • Камайкин Н.К.
  • Климов А.М.
RU2110353C1
БРОНЕБОЙНАЯ ПУЛЯ 1992
  • Юрьев А.Б.
  • Касьянов И.П.
  • Иогансен Б.А.
RU2018781C1
СПОСОБ ИЗГОТОВЛЕНИЯ СТАЛЬНЫХ БРОНЕБОЙНЫХ СЕРДЕЧНИКОВ 1996
  • Лялин В.М.
  • Токмаков В.С.
  • Павлов А.Ю.
  • Камайкин Н.К.
  • Журавлев Г.М.
RU2094161C1
ПУЛЯ 1989
  • Фролов Ю.З.
  • Корнилова Е.С.
RU2089839C1
US 5009166 A, 23.04.1991
US 5105514 A, 21.04.1992
SU 1727539 A3, 15.04.1992
ТУРБОДЕКОДЕР, ИСПОЛЬЗУЮЩИЙ ЛИНЕЙНЫЕ КОНГРУЭНТНЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ 1999
  • Ровитч Дуглас Н.
  • Линг Фуниун
RU2313177C2
US 5794320 A, 18.08.1998.

RU 2 151 369 C1

Авторы

Зеленко В.К.

Власов В.М.

Королев В.М.

Соломин Н.П.

Токмаков В.С.

Даты

2000-06-20Публикация

1999-04-02Подача