Изобретение относится к области криогенной техники по сжижению воздуха и криогенных холодильных машин, работающих по обратному циклу Стирлинга.
Известно, что температура кипения жидкого азота составляет 77 К, а температура кипения жидкого воздуха 79 К (Барон Р.Ф. Криогенные системы: Пер. с анг. - 2-е изд. - М: Энергоатомиздат, 1989. - стр. 47). Данное обстоятельство позволяет использовать жидкий азот в технологиях получения жидкого воздуха.
Известны технические решения для газификации сжиженных газов перед их раздачей потребителям с применением насосов высокого давления (Вопросы глубокого охлаждения. /Сб. статей под ред. проф. М.П.Малкова/. Изд.: "Иностр. литература", М., 1961, стр. 287 - 288).
Известно устройство сосуда Дьюара для жидкого азота с вакуумно-порошковой изоляцией (Соколов E.Я., Бродянский В.М. Энергетические основы трансформации тепла и процессов охлаждения: Учеб. пособие для вузов. - 2-е изд. - М.: Энергоиздат, 1981, стр. 202).
Известно, что в области криогенных температур (60 - 160 К) наиболее высокоэффективным циклом является обратный цикл Стирлинга. Эффективность криогенных машин Стирлинга практически в 2 раза выше по сравнению с другими установками, применяемыми для сжижения газов (Усюкин И.П. Установки, машины и аппараты криогенной техники. М.: Легкая и пищевая промышленность, 1982, стр. 185 - 186).
Известно устройство газовой холодильной машины "Филипса", работающей по обратному циклу Стирлинга, предназначенной для ожижения воздуха (Вопросы глубокого охлаждения. /Сб. статей под ред. проф. М.П.Малкова. / Изд.: "Иностр. литература", М., 1961, стр. 35).
Однако существующие в настоящее время криогенные машины Стирлинга имеют невысокую производительность.
Известно устройство воздушного ожижителя по циклу Гэмпсона с большой производительностью, включающего в себя линию подачи воздуха, компрессор, очиститель, противоточный теплообменник, дроссельный вентиль, емкость с жидким воздухом, линию подачи несконденсировавшегося воздуха, соединяющую емкость с жидким воздухом и компрессор. (Р.Б. Скотт Техника низких температур. Перевод под ред. проф. М.П.Малкова. М.: Изд. иностр. литер., 1962, стр. 19). Однако цикл Гэмпсона имеет невысокий КПД и коэффициент ожижения, в результате чего ожижается только часть воздуха, сжатого компрессором, а оставшаяся часть газообразного воздуха вновь подается в компрессор, что также приводит в снижению эффективности установки в целом.
Технический результат, который может быть получен при осуществлении изобретения, заключается в повышении КПД системы по ожижению воздуха и увеличение коэффициента ожижения до 100%.
Для достижения этого технического результата технологический комплекс Кириллова по ожижению воздуха, включающий в себя линию подачи воздуха, компрессор, очиститель, противоточный теплообменник, дроссельный вентиль, емкость с жидким воздухом, снабжен замкнутым контуром азота, включающим криогенную машину Стирлинга, с рабочим телом - гелием, конденсирующий змеевик в газообразной части емкости с жидким воздухом, а также, линию газообразного азота с дроссельным клапаном и расширительной емкостью, проходящую через противоточный теплообменник, и линию жидкого азота с сосудом Дьюара и насосом высокого давления, соединяющих криогенную машину Стирлинга с конденсирующим змеевиком, при этом в состав комплекса может быть параллельно включено несколько криогенных машин Стирлинга.
Введение в состав технологического комплекса Кириллова по ожижению воздуха замкнутого контура азота, включающего в себя криогенную машину Стирлинга, конденсирующий змеевик в газообразной части емкости с жидким воздухом, а также, линии газообразного и жидкого азота, соединяющих криогенную машину Стирлинга с конденсирующим змеевиком, позволяет получить новое свойство, заключающееся в возможности доожижения оставшейся части газообразного воздуха после его расширения в дроссельном вентиле, при теплообмене с жидким азотом, за счет разницы температур кипения, и повышение общего КПД системы за счет применения высокоэффективной криогенной машины Стирлинга с предварительным дросселированием газообразного азота перед ней.
На чертеже изображен технологический комплекс Кириллова по сжижению воздуха.
В состав технологического комплекса по сжижению воздуха входит линия подачи воздуха 1, компрессор 2, очиститель воздуха 3, противоточный теплообменник 4, дроссельный вентиль 5, емкость с жидким воздухом 6, и замкнутый контур азота, содержащий криогенную машину Стирлинга 7 с конденсатором (на чертеже не показан), конденсирующий змеевик 8, расположенный в емкости с жидким воздухом 6, линию жидкого азота 9 с сосудом Дьюара 10 и насосом высокого давления 11, а также линию газообразного азота 12 с дроссельным клапаном 13 и расширительной емкостью 14. Линии 9 и 12 соединяют криогенную машину Стирлинга 7 и конденсирующий змеевик 8.
Технологический комплекс Кириллова по сжижению воздуха работает следующим образом.
Воздух по линии подачи 1 поступает в компрессор 2, где сжимается до высокого давления и поступает в очиститель 3 для очистки от примесей. Затем предварительно охлаждается в противоточном теплообменнике 4, за счет теплообмена с холодным газообразным азотом, и, проходя через дроссельный вентиль 5, частично конденсируется. Жидкий воздух сливается в емкость 6. Оставшаяся часть несконденсировавшегося холодного воздуха конденсируется за счет теплообмена с жидким азотом, проходящим через змеевик 8. Для регенерации жидкого азота предусмотрен замкнутый контур азота.
Замкнутый контур заполняется азотом с повышенным давлением. При работе комплекса включают криогенную машину Стирлинга 7, в результате этого в ее конденсаторе сжижается азот, создавая разряжение в линии газообразного азота 12. Жидкий азот по линии 9 сливается в сосуд Дьюара 10 и насосом высокого давления 11 подается в конденсирующий змеевик 8, где за счет разницы температур кипения происходит теплообмен между жидким азотом и несконденсировавшимся воздухом. В результате теплообмена пары воздуха конденсируются, а жидкий азот переходит в газообразную фазу с повышенным давлением. По линии 12 газообразный азот поступает в противоточный теплообменник 4, а затем в расширительную емкость 14 через дроссельный клапан 13, где предварительно охлаждается, и поступает для конденсации в конденсатор криогенной машины Стирлинга 7.
Источники информации
1. Барон Р.Ф. Криогенные системы: пер. с анг. - 2-е изд. - М: Энергоатомиздат, 1989. - стр. 47.
2. Вопросы глубокого охлаждения. /Сб. статей под ред. проф. М.П.Малкова/. Изд.: "Иностр. литература", М., 1961, стр. 287 - 288.
3. Соколов E. Я. , Бродянский В.М. Энергетические основы трансформации тепла и процессов охлаждения: Учеб. пособие для вузов. - 2-е изд. - М.: Энергоиздат, 1981, стр. 202.
4. Усюкин И.П. Установки, машины и аппараты криогенной техники. М.: Легкая и пищевая промышленность. 1982, стр. 185 - 186.
5. Вопросы глубокого охлаждения. /Сб. статей под ред. проф. М.П.Малкова. /Изд.: "Иностр. литература", М., 1961, стр. 35.
6. Р.Б.Скотт Техника низких температур. Перевод под ред. проф. М.П.Малкова. М.: Изд. иностр. литер., 1962, стр. 19 - прототип.
Воздух сжимают в компрессоре и после очистки от примесей охлаждают в противоточном теплообменнике и расширяют в дроссельном вентиле. Полученный жидкий воздух сливают в емкость. Оставшуюся часть несконденсировавшегося воздуха охлаждают и ожижают за счет теплообмена с жидким азотом, проходящим по змеевику азотного контура, расположенному в емкости. Азотный контур выполнен замкнутым и содержит последовательно расположенные криогенную машину Стирлинга, сосуд Дьюара, насос высокого давления, змеевик, противоточный теплообменник, дроссельный клапан и расширительную емкость. Использование изобретения позволит повысить КПД и коэффициент ожижения. 1 з.п. ф-лы, 1 ил.
СКОТТ Р.Б | |||
Техника низких температур | |||
- М.: Изд | |||
иностранной литературы, 1962, с.19 | |||
Способ стабилизации работы криогенной установки | 1978 |
|
SU754167A1 |
Криогенная установка | 1976 |
|
SU606043A1 |
Устройство управления непосредственным преобразователем частоты на тиристорах | 1974 |
|
SU892601A1 |
КОЛОСНИКОВАЯ РЕШЕТКА | 1991 |
|
RU2009401C1 |
РАСПРЕДЕЛИТЕЛЬНАЯ ГОЛОВКА ПНЕВМАТИЧЕСКОЙ СЕЯЛКИ | 1995 |
|
RU2122307C1 |
Авторы
Даты
2000-08-20—Публикация
1999-05-19—Подача