Изобретение относится к классу ВРД условно называемому "пульсирующими детонационными двигателями" (ПДД). Основной отличительной особенностью этих двигателей является то, что горение смеси воздуха и топлива происходит в нестационарных ("пульсирующих") ударных волнах.
Все предлагаемые схемы данных двигателей можно условно разделить на два типа - "клапанные" и "бесклапанные" схемы. Основное отличие этих типов ПДД заключается в способе управления процессами наполнения камеры сгорания топливовоздушной смесью и освобождения от продуктов сгорания. В бесклапанном ПДД эти процессы связаны только с динамикой изменения давления в камере сгорания. В клапанных многокамерных схемах эти процессы управляются с помощью вращающихся клапанов или клапанов иных типов.
В большинстве реализаций ПДД инициирование горения смеси в каждом цикле работы осуществляется с помощью внешнего источника зажигания. Таким источником может служить, например, "детонационная трубка". В этом случае поджигание смеси осуществляется детонационной волной, выходящей из указанной трубки. Сама трубка периодически наполняется перемешанной топливовоздушной смесью, а детонационная волна в ней инициируется электрическим разрядом необходимой для этого мощности. Если реализация детонации в трубке не представляет особой проблемы, то создание с ее помощью детонационной волны в камере, причем волны, распространяющейся по камере влево, возможно только для "инициирующих", т.е. выходящих из трубки детонационных волн достаточно большой мощности. Наряду с использованием детонационной трубки рассматриваются другие способы инициирования детонационной волны (электрический разряд в камере, лазерные системы и т.п. S.Eidelman and W.Grossman "Pulsed Detonation Engine Experimental and Theoretical Rewiew", 1992, AIAA92-3168; T.E.Bratkovich and T. R. A. Bussing "A Pulse Detonation Engine Performance Model", 1995, AIAA95-3155).
Изобретение решает задачу увеличения удельного импульса и уменьшения теплонапряженности тракта двигателя при полете на больших сверхзвуковых скоростях (для водородовоздушного двигателя с числами Маха полета М от 4,5 до 7,5).
Технический результат достигается в сверхзвуковом пульсирующем детонационном прямоточном воздушно-реактивном двигателе (СПДПД), содержащем сверхзвуковой воздухозаборник, сверхзвуковую камеру смешения, сверхзвуковую камеру сгорания, сверхзвуковое сопло, устройство запуска двигателя, систему подачи топлива, включающую пилоны с соплами и клапаны изменения режима подачи топлива, связанные через систему управления подачей топлива с датчиками регистрации прохождения детонационными волнами заданных расстояний от входа и выхода камеры сгорания.
Технический результат достигается также в способе функционирования сверхзвукового пульсирующего детонационного прямоточного воздушно-реактивного двигателя (СПДПД), заключающемся в том, что в момент запуска двигателя подают топливо и инициируют детонационную волну, дальнейшую работу двигателя обеспечивают последовательно-периодически, изменяя подачу топлива, реализуя в камере сгорания богатую и бедную топливовоздушную смесь и вызывая изменение направления и скорости перемещения волны относительно камеры сгорания от ее выхода ко входу по богатой смеси и в обратном направлении по бедной смеси, в предельном случае - по чистому воздуху, при сохранении направления движения волны против потока.
Изобретение является новой бесклапанной схемой прямоточного воздушно-реактивного двигателя со сверхзвуковым потоком в камере сгорания и с горением в пульсирующей детонационной волне - "сверхзвуковым пульсирующим детонационным прямоточным двигателем - СПДПД". В СПДПД пульсирующий нестационарный процесс инициируется периодическими прерываниями подачи топлива. В СПДПД детонационная волна в богатой смеси и периодически сменяющая ее детонационная волна в бедной смеси или "головная" ударная волна распространяются в сверхзвуковом потоке, а не в покоящемся газе или в дозвуковом потоке, как в ПДД обсуждавшихся типов. Во-вторых, в этой схеме нет постоянного "внешнего источника зажигания". Внешний источник зажигания нужен в СПДПД лишь для запуска.
Сущность изобретения поясняется чертежом. Сверхзвуковой пульсирующий детонационный прямоточный воздушно-реактивный двигатель (СПДПД) содержит сверхзвуковой воздухозаборник 1, сверхзвуковую камеру 2 смешения, сверхзвуковую камеру 3 сгорания, сверхзвуковое сопло 4, устройство 5 запуска двигателя, систему 6 подачи топлива, включающую пилоны 7 с соплами 8 и клапаны 9 изменения режима подачи топлива, связанные через систему 10 управления подачей топлива с датчиками 11 регистрации прохождения детонационными волнами заданных расстояний от входа и выхода камеры сгорания.
СПДПД функционирует следующим образом:
1. Набегающий поток воздуха (для водородо-воздушного СПДПД с числом М ≈ 4.5-7.5 фиг. 1, сечение 0) тормозится в косых скачках сверхзвукового воздухозаборника 1 до М ≈ 2.5 -4.5 (сечение 1).
2. В сечении 2 воздушный поток дополнительно (незначительно) тормозится в косых скачках, возникающих при обтекании пилонов 7, установленных в этом сечении для подачи топлива.
3. Пройдя топливные пилоны 7, воздух попадает в камеру 2 смешения, длина которой - Lm много больше калибра топливных пилонов 7 и достаточна для образования гомогенной топливовоздушной смеси с заданным коэффициентом избытка воздуха (a ≥ 1). В зависимости от фазы цикла работы двигателя из топливных пилонов подается различное количество топлива. Таким образом, управление рабочим циклом двигателя осуществляется путем управления подачей топлива.
3.1. В случае, когда топливо из пилонов подается в "большем" количестве на выходе из камеры 2 смешения образуется близкая к гомогенной топливовоздушная смесь с заданным коэффициентом избытка воздуха ( α ≈ 1 "богатая" смесь) и сверхзвуковой скоростью течения.
3.2. В случае, когда топливо подается в "малом" количестве (или не подается совсем) на выходе из камеры 2 смешения образуется близкая к гомогенной топливовоздушная смесь с коэффициентом избытка воздуха α > 1 (в пределе "чистый" воздух) ("бедная" смесь) и сверхзвуковой скоростью течения.
4. Цикл работы двигателя состоит в следующем.
4.1. По богатой топливовоздушной смеси, поступающей из камеры 2 смешения в камеру 3 сгорания, против потока, распространяется детонационная волна, в которой происходит сгорание топливовоздушной смеси. Продукты сгорания поступают в сопло 4 и, расширяясь, обеспечивают тягу двигателя. Скорость распространения детонационной волны превышает скорость течения топливовоздушной смеси, поэтому детонационная волна движется по направлению ко входу в камеру 3 сгорания относительно двигателя.
4.2. В момент, когда детонационная волна достигает заданной точки вблизи входа в камеру 3 сгорания режим, подачи топлива изменяется. Детонационная волна продолжает двигаться по направлению ко входу в камеру 3 сгорания до тех пор, пока в камеру 3 сгорания продолжает поступать остаток богатой топливовоздушной смеси.
4.3. После того, как богатая топливовоздушная смесь на входе в камеру 3 сгорания сменится потоком бедной смеси или "чистого" воздуха и детонационная волна войдет в этот поток, детонационная волна либо становится менее интенсивной (в случае входа в бедную смесь), либо переходит в ударную волну. В обоих случаях детонационная или ударная волна продолжает распространяться против потока. Но скорость распространения этих волн меньше, чем скорость набегающего потока и, поэтому волны сносятся потоком в направлении выхода из камеры 3 сгорания.
4.4. В момент, когда волна достигнет заданной точки вблизи выхода из камеры 3 сгорания из топливных пилонов 7 начинает подаваться "большое" количество топлива. Режим подачи топлива изменяется в момент прохождения детонационной или ударной волной заданного сечения вблизи выхода из камеры 3 сгорания.
4.5. После того, как детонационная волна входит в богатую топливовоздушную смесь происходит увеличение интенсивности детонационной волны. В случае входа в богатую топливовоздушную смесь ударной волны происходит воспламенение топливовоздушной смеси за ударной волной (вследствие достаточно высокой температуры потока за ударной волной ~ 1100 К). Выделившаяся энергия сгорания топлива за ударной волной приводит к увеличению интенсивности последней и переходу ее в детонационную волну.
4.6. Сформировавшаяся детонационная волна начинает двигаться в сторону входа в камеру 3 сгорания и цикл работы двигателя повторяется.
Изобретение может быть использовано в качестве двигателя летательных аппаратов различного назначения), а способ функционирования его системы подачи топлива, камер смешения и сгорания - в магнито-газодинамических генераторах, работающих в периодическом режиме.
название | год | авторы | номер документа |
---|---|---|---|
ПУЛЬСИРУЮЩИЙ ДЕТОНАЦИОННЫЙ ПРЯМОТОЧНЫЙ ВОЗДУШНО-РЕАКТИВНЫЙ ДВИГАТЕЛЬ И СПОСОБ ФУНКЦИОНИРОВАНИЯ ДВИГАТЕЛЯ | 2011 |
|
RU2476705C1 |
СПОСОБ ОРГАНИЗАЦИИ ДЕТОНАЦИОННО-ДЕФЛАГРАЦИОННОГО ГОРЕНИЯ И ДЕТОНАЦИОННО-ДЕФЛАГРАЦИОННЫЙ ПУЛЬСИРУЮЩИЙ ПРЯМОТОЧНЫЙ ВОЗДУШНО-РЕАКТИВНЫЙ ДВИГАТЕЛЬ | 2014 |
|
RU2563092C2 |
СПОСОБ СЖИГАНИЯ ТОПЛИВО-ВОЗДУШНОЙ СМЕСИ И ПРЯМОТОЧНЫЙ ВОЗДУШНО-РЕАКТИВНЫЙ ДВИГАТЕЛЬ СО СПИНОВОЙ ДЕТОНАЦИОННОЙ ВОЛНОЙ | 2014 |
|
RU2573427C2 |
СПОСОБ РАБОТЫ СВЕРХЗВУКОВОГО ПУЛЬСИРУЮЩЕГО ПРЯМОТОЧНОГО ВОЗДУШНО-РЕАКТИВНОГО ДВИГАТЕЛЯ И СВЕРХЗВУКОВОЙ ПУЛЬСИРУЮЩИЙ ПРЯМОТОЧНЫЙ ВОЗДУШНО-РЕАКТИВНЫЙ ДВИГАТЕЛЬ | 2007 |
|
RU2347098C1 |
ГИПЕРЗВУКОВОЙ ПРЯМОТОЧНЫЙ ВОЗДУШНО-РЕАКТИВНЫЙ ДВИГАТЕЛЬ (ГПВРД) И СПОСОБ ОРГАНИЗАЦИИ ГОРЕНИЯ | 2003 |
|
RU2262000C2 |
СПОСОБ ОРГАНИЗАЦИИ ГОРЕНИЯ ТОПЛИВА И ДЕТОНАЦИОННО-ДЕФЛАГРАЦИОННЫЙ ПУЛЬСИРУЮЩИЙ ПРЯМОТОЧНЫЙ ВОЗДУШНО-РЕАКТИВНЫЙ ДВИГАТЕЛЬ | 2014 |
|
RU2585328C2 |
СПОСОБ ОРГАНИЗАЦИИ ГОРЕНИЯ В ГИПЕРЗВУКОВОМ ПРЯМОТОЧНОМ ВОЗДУШНО-РЕАКТИВНОМ ДВИГАТЕЛЕ И ГИПЕРЗВУКОВОЙ ПРЯМОТОЧНЫЙ ВОЗДУШНО-РЕАКТИВНЫЙ ДВИГАТЕЛЬ | 2010 |
|
RU2453719C1 |
ГИПЕРЗВУКОВОЙ ПРЯМОТОЧНЫЙ ВОЗДУШНО-РЕАКТИВНЫЙ ДВИГАТЕЛЬ | 2013 |
|
RU2542652C1 |
ГИПЕРЗВУКОВОЙ ПУЛЬСИРУЮЩИЙ ДЕТОНАЦИОННЫЙ ДВИГАТЕЛЬ И СПОСОБ ЕГО ФУНКЦИОНИРОВАНИЯ | 2007 |
|
RU2347097C1 |
ПИЛОН - АВТОВОСПЛАМЕНИТЕЛЬ ТОПЛИВА | 2010 |
|
RU2428576C1 |
Сверхзвуковой пульсирующий детонационный прямоточный воздушно-реактивный двигатель содержит сверхзвуковой воздухозаборник, сверхзвуковую камеру смешения, сверхзвуковую камеру сгорания, сверхзвуковое сопло, устройство запуска двигателя и систему подачи топлива. Система подачи топлива содержит пилоны с соплами и клапаны изменения режима подачи топлива, связанные через систему управления подачей топлива с датчиками регистрации прохождения детонационными волнами заданных расстояний от входа и выхода камеры сгорания. Способ функционирования сверхзвукового пульсирующего детонационного прямоточного воздушно-реактивного двигателя заключается в том, что в момент запуска двигателя подают топливо и инициируют детонационную вoлну, дальнейшую работу двигателя обеспечивают последовательно-периодически, изменяя подачу топлива, реализуя в камере сгорания богатую и бедную топливовоздушную смесь и вызывая изменения направления и скорости перемещения волны относительно камеры сгорания от ее выхода ко входу по богатой смеси и в обратном направлении по бедной смеси, в предельном случае - по чистому воздуху, при сохранении направления движения волны против потока. Изобретение позволяет увеличить удельный импульс и уменьшить теплонапряженность тракта двигателя при полете на больших сверхзвуковых скоростях. 2 с.п. ф-лы, 1 ил.
RU 2066426 C1, 10.09.1996 | |||
РЕГУЛИРУЕМАЯ ДЕТОНАЦИОННАЯ КАМЕРА ПУЛЬСИРУЮЩЕГО РЕАКТИВНОГО ДВИГАТЕЛЯ | 1993 |
|
RU2078974C1 |
RU 2059857 C1, 10.05.1996 | |||
КАМЕРА ПУЛЬСИРУЮЩЕГО ДВИГАТЕЛЯ ДЕТОНАЦИОННОГО ГОРЕНИЯ | 1994 |
|
RU2084675C1 |
US 3777487 A, 11.12.1973 | |||
US 3777488 A, 11.12.1973 | |||
US 3727409 A, 17.04.1973 | |||
US 5223651 A, 29.06.1993 | |||
Автоматическое подъемно-поворотное устройство | 1985 |
|
SU1301652A1 |
Авторы
Даты
2000-10-20—Публикация
1999-05-26—Подача